APPENDIX A

 DESIGN OF FENDERS
APPENDIX A DESIGN OF FENDERS

A. 1 Example 1

Given

Details of design vessels for a proposed solid pier are given as follows :

	Type 1 Vessel	Type 2 Vessel
Length	8.0 m	35.0 m
Beam	5.0 m	20.0 m
Depth	1.2 m	2.5 m
Draft	0.7 m	1.5 m
Displacement	25 tonnes	400 tonnes
Bent radius of bow side of vessel	10.0 m	25.0 m

Determine the layout and the size of rubber fenders.

Solution

(a) Length of fenders

Low water level $=+0.2 \mathrm{mPD}$
High water level $=+3.0 \mathrm{mPD}$
Freeboard for Type 1 Vessel $=1.2-0.7=0.5 \mathrm{~m}$
Freeboard for Type 2 Vessel $=2.5-1.5=1.0 \mathrm{~m}$
Length of fenders $=3.5 \mathrm{~m}$, extending from +0.15 mPD to +3.65 mPD to allow berthing under low and high water levels.

The relationship between fenders and vessels at different water levels is shown as follows :

(b) Spacing of fenders (See Figure 8)

The length of the small vessel (Type 1 Vessel) using the pier $=8.0 \mathrm{~m}$
Maximum fender spacing $=0.15 \times 8.0 \mathrm{~m}=1.2 \mathrm{~m}$

Smallest bent radius of bow side of vessel $=10.0 \mathrm{~m}$
Height of fenders $=0.25 \mathrm{~m}$
Maximum fender spacing $=2 \times\left[10^{2}-(10-0.25)^{2}\right]^{1 / 2}=4.4 \mathrm{~m}$

Therefore, use fender spacing of 1.2 m .
(c) Size of fenders

Based on the dimensions of the vessels :

- Distance of the point of contact of Type 1 Vessel from its centre of mass $=3.0 \mathrm{~m}$
- Distance of the point of contact of Type 2 Vessel from its centre of mass $=12.0 \mathrm{~m}$

Assume that the angle between the line joining the point of contact to the centre of mass and the velocity vector of the vessel $=45^{\circ}$

Calculation of berthing energy (see Section 5.12 of Part 1 of the Manual) :

	Type 1 Vessel	Type 2 Vessel
V_{b}	$0.4 \mathrm{~m} / \mathrm{s}$	$0.3 \mathrm{~m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{m}}=1+2\left(\mathrm{D}_{\mathrm{v}} / \mathrm{B}_{\mathrm{v}}\right)$	$1+2(0.7 / 5.0)=1.28$	$1+2(1.5 / 20.0)=1.15$
$\begin{aligned} & \mathrm{C}_{\mathrm{e}}=\left(\mathrm{K}_{\mathrm{v}}{ }^{2}+\mathrm{R}_{\mathrm{v}}{ } \cos ^{2} \mathrm{v}\right) /\left(\mathrm{K}_{\mathrm{v}}{ }^{+} \mathrm{R}_{\mathrm{v}}{ }^{2}\right) \\ & \text { Where } \mathrm{K}_{\mathrm{v}}=\left(0.19 \mathrm{C}_{\mathrm{b}}+0.11\right) \mathrm{L}_{\mathrm{v}} \end{aligned}$	$\begin{aligned} \mathrm{K}_{\mathrm{v}}= & {\left[0.19 \times 25 \times 10^{3} /(8\right.} \\ & \times 5 \times 0.7 \times 1025) \\ & +0.11] \times 8=2.2 \\ \mathrm{C}_{\mathrm{e}}= & \left(2.2^{2}+3.0^{2} \cos ^{2} 45\right) \\ & /\left(2.2^{2}+3.0^{2}\right)=0.67 \end{aligned}$	$\begin{aligned} \mathrm{K}_{\mathrm{v}}= & {\left[0.19 \times 400 \times 10^{3} /(35\right.} \\ & \times 20 \times 1.5 \times 1025) \\ & +0.11] \times 35=6.32 \\ \mathrm{C}_{\mathrm{e}}= & \left(6.32^{2}+12.0^{2} \cos ^{2} 45\right) \\ & /\left(6.32^{2}+12.0^{2}\right)=0.61 \end{aligned}$
$\mathrm{C}_{\text {s }}$	1.0	1.0
C_{c} (for solid pier)	0.9	0.9
Berthing energy	$\begin{gathered} 0.5\left(1.28 \times 25 \times 0.4^{2} \times 0.67 \times\right. \\ 1.0 \times 0.9)=1.5 \mathrm{kNm} \end{gathered}$	$\begin{gathered} 0.5\left(1.15 \times 400 \times 0.3^{2} \times 0.61 \times\right. \\ 1.0 \times 0.9)=11.4 \mathrm{kNm} \end{gathered}$

The total energy to be absorbed for accidental loading should be at least 50% greater than that for normal loading.

Therefore, select a rubber fender from the supplier's catalogue with design energy absorption
capacity greater than $11.4 \times 1.5=17.1 \mathrm{kNm}$

Since the pier has many fenders installed at a close spacing, the effect of angular compression on the fenders is neglected.

From the performance curve of the fender, the berthing reaction $=325 \mathrm{kN}$

Performance curve of fenders

A. 2 Example 2

Given

The existing timber fenders of a piled deck ferry pier are to be replaced by plastic fenders. Determine the size of the plastic fenders, waling and rubber buffers. The design data are as follows:

Design vessel
Displacement $=940$ tonnes
Length $\quad=65.0 \mathrm{~m}$
Beam $\quad=12.0 \mathrm{~m}$
Depth $\quad=4.3 \mathrm{~m}$
Draft $\quad=2.0 \mathrm{~m}$

Existing fender frame

Dimensions in mm

Solution

(1) Try the following dimensions for the components of the fender frame

Plastic fender
Size $\quad=300 \mathrm{~mm} \times 300 \mathrm{~mm}$
Modulus of elasticity, $\mathrm{E}=32 \mathrm{Mpa}$
Moment of inertia, $\mathrm{I} \quad=0.0098 \mathrm{~m}^{4}$
Bending stress, $\sigma \quad=7 \mathrm{Mpa}$
Allowable moment $\quad=\sigma \mathrm{I} / \mathrm{y}=7 \times 10^{6} \times 0.0098 /(0.3 / 2)=457.3 \mathrm{kNm}$

Rubber buffer

Cylindrical fender with outside diameter $=500 \mathrm{~mm}$

Steel waling

Section $\quad=356 \times 406 \times 340 \mathrm{~kg} / \mathrm{m}$ Universal Column (Grade 43)
Modulus of elasticity, $\mathrm{E}=200 \mathrm{MPa}$
Design stress $\quad=265 \mathrm{Mpa}$
Plastic Modulus, $\mathrm{S} \quad=6.03 \times 10^{6} \mathrm{~mm}^{3}$
Moment capacity $\quad=265 \times 6.03=1598 \mathrm{kNm}$
(2) Calculation of berthing energy

Assume the distance of the point of contact of the vessel from its centre of mass $=20 \mathrm{~m}$

Angle between the line joining the point of contact to the centre of mass and the velocity vector, $\gamma=45^{\circ}$
$\mathrm{V}_{\mathrm{b}}=0.3 \mathrm{~m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{m}}=1+2(2.0 / 12)=1.33$
$\mathrm{K}_{\mathrm{v}}=\left[0.19 \times 940 \times 10^{3} /(65 \times 12 \times 2.0 \times 1025)+0.11\right] \times 65=14.41$
$\mathrm{C}_{\mathrm{e}}=\left(14.41^{2}+20^{2} \cos ^{2} 45\right) /\left(14.41^{2}+20^{2}\right)=0.67$
$\mathrm{C}_{\mathrm{s}}=1.0$
$\mathrm{C}_{\mathrm{c}}=1.0$ for piled deck pier

Berthing energy $=0.5 \times\left(1.33 \times 940 \times 0.3^{2} \times 0.67 \times 1.0 \times 1.0\right)=37.7 \mathrm{kNm}$
(3) Capacity of the fender frame

The capacity of the fender system is checked for the following load cases:

Load case 1: Berthing load at close proximity to the buffer
A

$\stackrel{375}{\longleftrightarrow} \quad 5 @ 650=3250 \longrightarrow \underset{\longleftrightarrow}{375}$

Let the berthing load be P .
Assume that the design vessel collides with two fenders at one time and the berthing load P is equally shared between the two fenders. Since the berthing load P is very close to the buffer, it is assumed that all the berthing energy is absorbed by the buffer at B only. The total energy to be absorbed for accidental loading should be at least 50% greater than that for normal loading.

Berthing energy to be absorbed $=37.7 \times 1.5=56.6 \mathrm{kNm}$

Performance curve of buffers

From the performance curve of the buffer,
Reaction force $=590 \mathrm{kN}$
Deflection $=48 \% \times 500=240 \mathrm{~mm}<300 \mathrm{~mm}$

Load case 2: Berthing load at mid-span of steel waling

Assume that the total berthing energy is to be equally shared between two buffers (A and B). The total energy to be absorbed for accident loading should be at least 50% greater than that for normal loading.
Therefore, berthing energy to be absorbed by one buffer $=37.7 \times 1.5 / 2=28.3 \mathrm{kNm}$

From the performance curve of the buffer, the reaction force at $\mathrm{B}=600 \mathrm{kN}$
By symmetry, the reaction force at $\mathrm{A}=600 \mathrm{kN}$ and $\mathrm{P} / 2=600 \mathrm{kN}$

Checking moment capacity of steel waling :
Maximum Moment in steel waling $=600 \times 2-600 \times 0.375=975 \mathrm{kN}$
Taking a load factor of 1.6 according to BS 5950
Factored moment $=1.6 \times 975=1560 \mathrm{kNm}(<1598 \mathrm{kNm}, \mathrm{OK})$

Checking deflection of steel waling
Allowable deflection $=\mathrm{L} / 360=4000 / 360=11.1 \mathrm{~mm}$
Actual deflection of steel waling at mid-span $=6.1 \mathrm{~mm}(<11.1 \mathrm{~mm}, \mathrm{OK})$

Note: In principle, when the load is applied at the steel waling, there is some energy absorbed by the steel waling due to bending. When the load is at mid-span, this energy is approximately equal to $3.7 \mathrm{kNm}(1 / 2 \times 0.0061 \times 600+1 / 2 \times 0.0061 \times 600)$. It is negligible in comparison to the total berthing energy of 56.5 kNm .

Load case 3: Berthing load at mid-span of plastic fenders

Similarly to load case 2 , assume that the total berthing energy is equally shared between two buffers (B and D). Therefore, the reaction force at $\mathrm{B}=600 \mathrm{kN}$ By symmetry, the reaction force at $\mathrm{A}=600 \mathrm{kN}$ and $\mathrm{P} / 2=600 \mathrm{kN}$

Deflection of a plastic fender at mid-span
$=\mathrm{FL}^{3} / 16 \mathrm{EI}$
(where F is the applied load at mid-span)
$=(\mathrm{P} / 2)(3)^{3} /\left(16 \times 32 \times 10^{6} \times 0.0098\right)$
$=3.3 \mathrm{~mm}$

Maximum moment in one plastic fender
$=(\mathrm{P} / 2)(3) / 4$
$=450 \mathrm{kNm}(<457.3, \mathrm{OK})$

Note : In principle, when the load is applied at the two plastic fenders, there is some energy absorbed by the plastic fenders due to bending. When the load is at mid-span, this energy is approximately equal $2.0 \mathrm{kNm}(1 / 2 \times 0.0033 \times 600+1 / 2 \times 0.0033 \times 600)$. This is negligible in comparison to the total berthing energy of 56.5 kNm .

