

TABLE 1: RELATIONSHIP BETWEEN MAXIMUM BULK DENSITY AND OPTIMUM MOISTURE CONTENT FOR VARIOUS MATERIAL

SOIL TYPE	RAMMER USED TO DETERMINE THE MAXIMUM DRY DENSITY IN ACCORDANCE WITH GEOSPEC 3	BEST-FIT RELATIONSHIP
sandy SILT/CLAY	2.5 kg	$\rho_{\text{m}} = -0.021 w_{\text{O}} + 2.399$
silty/clayey SAND	2.5 kg	$\rho_{\text{m}} = 2.385 e^{-0.009 w_{\text{O}}}$
grave ll y SAND	2.5 kg	$\rho_{\rm m} = 2.996 {\rm w_0}^{-0.134}$
sandy GRAVEL	2.5 kg	$\rho_{\rm m} = 2.514 e^{-0.012 w_{\rm O}}$
sandy GRAVEL	4.5 kg	$\rho_{\rm m} = 2.491 {\rm e}^{-0.01 {\rm w}_{\rm O}}$

NOTES:

- 1. THIS METHOD FOR DETERMINING THE DIFFERENCE BETWEEN THE OPTIMUM MOISTURE CONTENT AND IN-SITU MOISTURE CONTENT OF A MATERIAL IS APPLICABLE TO THE MATERIAL WITH PROPERTIES FALLING WITHIN THE LIMIT OF ± TWO STANDARD DEVIATIONS IN OPTIMUM MOISTURE CONTENT AS SHOWN IN FIGURES 2(a) TO 2(e). CHECK THE PROPERTIES OF MATERIAL BEING TESTED BASED ON THE SOIL TYPE.
- 2. THE APPROXIMATE VALUE OF OPTIMUM MOISTURE CONTENT (w_0) can be determined based on the maximum converted bulk density and the relationships between maximum bulk density $(\rho_{\mbox{\scriptsize m}})$ and optimum moisture content (w_0) in table 1.
- 3. THE MOISTURE CONTENT ADJUSTMENT VALUE $(z_{\text{\scriptsize C}})$ SHALL BE CALCULATED AS FOLLOWS:

$$z_{C} = \frac{z_{m}}{1 + z_{m}} (w_{O} - z_{m})$$

THE HILF METHOD OF RAPID COMPACTION CONTROL (SHEET 2 OF 2)

卓越工程 建設香港

CEDD

REF.

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE DIAGRAMMATIC
DATE JAN 1991

FORMER DRG NO. C2006A

REVISION

DRAWING NO. C2006 /2

Original Signed | 12.2023

SIGNATURE DATE

We Engineer Hong Kong's Development