⁴⁰Ar-³⁹Ar LASER MICROPROBE DATING OF MAFIC DYKES AND FAULT ROCKS IN HONG KONG

GEO REPORT No. 206

S.D.G. Campbell & R.J. Sewell

GEOTECHNICAL ENGINEERING OFFICE CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT THE GOVERNMENT OF THE HONG KONG SPECIAL ADMINISTRATIVE REGION

⁴⁰Ar-³⁹Ar LASER MICROPROBE DATING OF MAFIC DYKES AND FAULT ROCKS IN HONG KONG

GEO REPORT No. 206

S.D.G. Campbell & R.J. Sewell

This report was originally produced in April 2005 as GEO Geological Report No. GR 2/2005

© The Government of the Hong Kong Special Administrative Region

First published, June 2007

Prepared by:

Geotechnical Engineering Office, Civil Engineering and Development Department, Civil Engineering and Development Building, 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong.

PREFACE

In keeping with our policy of releasing information which may be of general interest to the geotechnical profession and the public, we make available selected internal reports in a series of publications termed the GEO Report series. The GEO Reports can be downloaded from the website of the Civil Engineering and Development Department (http://www.cedd.gov.hk) on the Internet. Printed copies are also available for some GEO Reports. For printed copies, a charge is made to cover the cost of printing.

The Geotechnical Engineering Office also produces documents specifically for publication. These include guidance documents and results of comprehensive reviews. These publications and the printed GEO Reports may be obtained from the Government's Information Services Department. Information on how to purchase these documents is given on the second last page of this report.

R.K.S. Chan

Head, Geotechnical Engineering Office

June 2007

FOREWORD

Following a recommendation in GEO Report No. 118, pilot studies were carried out to investigate the application in Hong Kong of the Argon-Argon (Ar-Ar) method to dating both fault material, and mafic and intermediate dykes. The ⁴⁰Ar-³⁹Ar dating method is based on the same radioisotope decay system as that used in the K-Ar method of dating. The ⁴⁰Ar-³⁹Ar method, however, allows all information needed to calculate a sample's age to be determined from the Ar isotopic composition of irradiated samples. The ⁴⁰Ar-³⁹Ar laser step-heating method was therefore used in this study to date: age(s) of major phases of activity of selected faults; and ages of formation of selected mafic and intermediate dykes.

The study has demonstrated that dating of fault movements is feasible. The main phase(s) of fault activity identified during the study occurred about 70-90 million years ago (Upper Cretaceous). However, the technique appears capable of identifying fault histories in individual samples and younger fault events are also suggested by the data. These include events at 34, 10 and between 3 and 4 million years ago. The technique was not able to identify events more recent than about 3 million years ago. The technique was also successfully applied to the dating of the mafic dykes, the majority of which appear to have been emplaced between 87 and 100 million years ago.

The study was carried out, and the report was compiled, by Dr S.D.G. Campbell and Dr R.J. Sewell. The analyses were performed by the Argon Geochronology Laboratory (AGL), Department of Physics, University of Toronto, Canada. This report draws extensively on reports submitted by the AGL, and by Professors Derek York and Norman Evenson in particular, whose major contributions to the study are gratefully acknowledged.

(H N Wong)

Chief Geotechnical Engineer/Planning

CONTENTS

				Page No.		
	Title	Page		1		
	PRE	FACE		3		
	FOR	EWORI		4		
	CON	ITENTS		5		
1				7		
1.	INTI	RODUC	HON	/		
2.	OBJ	ECTIVE	ES OF THE STUDY	7		
3.	MET	THODOI	LOGIES	8		
	3.1	Gener	ral	8		
	3.2	Mafic	Dykes	8		
	3.3	Fault 1	Rocks	9		
4.	ANA	ALYTIC.	AL PROCEDURES	9		
5.	ANALYTICAL RESULTS AND INTERPRETATION					
	5.1	Gener	ral	10		
		5.1.1	Remarks on Whole-rock and Feldspar Analyses	10		
		5.1.2	Remarks about Pyrite Analyses	11		
	5.2	Dyke	Samples	12		
		5.2.1	HK1651	12		
		5.2.2	HK9728	13		
		5.2.3	HK9842	14		
		5.2.4	HK10981	15		
		5.2.5	Summary	15		
	5.3	Fault 1	Rock Samples	15		
		5.3.1	Pyrite from HK12078	16		
		5.3.2	HK7284	17		
		5.3.3	K-Feldspar from HK12086	17		
		5.3.4	K-Feldspar from HK12078	17		
		5.3.5	K-Feldspar from HK3419	18		

		Page No.
	5.3.6 Whole Rock from HK7729	18
6.	CONCLUSIONS	19
7.	REFERENCES	21
	LIST OF TABLES	23
	LIST OF FIGURES	29
	APPENDIX A: RAW DATA FOR ANALYSES OF DYKE SAMPLES	49
	APPENDIX B: RAW DATA FOR ANALYSES OF FAULT ROCK SAMPLES	63

1. INTRODUCTION

GEO Report No. 118 (Sewell & Campbell, 2001) described various absolute age-dating studies carried out previously in Hong Kong on volcanic and plutonic rocks, superficial deposits and faults. One of the recommendations of the report was that pilot studies should be carried out to investigate the application in Hong Kong of the Argon-Argon (Ar-Ar) method to dating both fault material, and dykes of mafic and intermediate composition. An early pilot application of the Ar-Ar technique in 1993 had attempted to date mafic dykes in Hong Kong, as reported in Sewell & Campbell (2001). However, this had provided ambiguous results, possibly due to the susceptibility of the technique to resetting at temperatures above c.350°C. Therefore further pilot studies were carried out to assess the viability of the technique more fully.

An initial pilot analysis of a single sample of andesite, reported elsewhere in detail (AGL, 1998), used the 40 Ar- 39 Ar laser step heating method to date a single whole-rock chip from a metamorphosed andesite. The sample (HK 856) was obtained from the Tuen Mun Formation in the North-West New Territories of Hong Kong. This sample returned an age of 83.6 ± 0.4 Ma, which was considered to represent the time of metamorphic overprinting of the rock. Therefore, this demonstrated the potential use of the technique for dating deformation events in general, and possibly also major fault movements. The age spectrum of the sample also showed evidence for a multistage history. This was further confirmed by the analysis of two very small amphibole crystals from the same sample. These were dated at approximately 150 Ma, which are more consistent with Middle to Upper Jurassic emplacement ages for the rock inferred for these rocks (Sewell et al., 2000). While the multistage history would make such material unsuitable for conventional K-Ar dating, this preliminary 40 Ar- 39 Ar dating study suggested that the dating of major fault/dynamic metamorphic events, and emplacement ages of such material was viable.

This report presents the findings of such pilot studies. The analytical work was carried out by the Argon Geochronology Laboratory (AGL) in the Department of Physics, University of Toronto, Toronto, Ontario, Canada, under the direction of Professors Derek York and Norman Evenson. The report draws extensively on reports produced by the AGL (2000a and b), under contract to the Geotechnical Engineering Office, of the then Civil Engineering Department.

2. OBJECTIVES OF THE STUDY

The main objectives of the study were to investigate the application of the ⁴⁰Ar-³⁹Ar laser step-heating method to dating:

- (i) the age of formation of selected Hong Kong mafic and intermediates dykes, and
- (ii) the age(s) of major phases of activity of selected faults.

3. METHODOLOGIES

3.1 General

The ⁴⁰Ar-³⁹Ar dating method is based on the same radioisotope decay system as that used in the K-Ar method of dating, whereby natural, spontaneous radioactive decay of the potassium isotope ⁴⁰K, occurs at a known rate to produce the isotope ⁴⁰Ar. fundamental difference between the ⁴⁰Ar-³⁹Ar and K-Ar methods (Noller et al., 2000) is that the ⁴⁰Ar-³⁹Ar method allows all the information needed to calculate a sample's age to be determined from the Ar isotopic composition of irradiated samples. In the simplest case, this requires measuring only the relative atomic abundances of ⁴⁰Ar, ³⁹Ar and ³⁶Ar by mass spectrometry; ³⁶Ar is used, as in K-Ar dating to provide information about non-radiogenic ⁴⁰Ar, most commonly in making air correction. The measurement of K indirectly via ³⁹Ar is more precise and has better abundance sensitivity (Noller et al., 2000) than most of the commonly used techniques for measuring K in K-Ar dating, and avoids error due to potential homogeneity of K, and thus avoids the need to measure absolute amounts of Ar. The advantages of the ⁴⁰Ar-³⁹Ar dating method generally outweigh those of the K-Ar method, although the latter is cheaper and faster, and is not subject to recoil of ³⁹Ar atoms produced by the ³⁹K-³⁹Ar reaction (redistribution and/or loss of ³⁹Ar within/from small samples potentially introducing artificial age complexities to age spectra without necessarily affecting the total gas age).

The ability to calculate an age using only Ar isotope data permits the analysis of extremely small samples, including individual crystal phases (e.g. mica, feldspar, pyrite, chlorite), by incremental heating or total fusion. This enables potentially complex histories of formation and deformation (e.g. faulting) to be dated separately within the same samples. The analyses reported here used a laser step-heating incremental technique.

3.2 Mafic Dykes

Dating of basaltic samples has traditionally been carried out by whole rock analysis, rather than by dating of individual mineral phases. Previous work in Hong Kong by Chandy and Snelling (in Allen & Stephens, 1971) used the Potassium-Argon (K-Ar) decay system to determine the ages of 'dolerites', and suggested that two episodes of intrusion were represented: Upper Cretaceous and Palaeocene.

An early pilot application in 1993 of the Ar-Ar technique to date mafic dykes in Hong Kong, reported in Sewell & Campbell (2001), provided ambiguous results, possibly due to the susceptibility of the technique to resetting at temperatures above c.350°C.

For the present study, the dyke material available for analysis (Table 1, Figure 1), was examined under a binocular microscope, after gentle crushing in a mortar. This confirmed that most of the samples were too fine-grained to allow significant mineral phases to be separated. Therefore, most of the irradiated material consisted of whole-rock chips. However, one sample (HK 9842) yielded small pyrite and chlorite and small (0.25 mm diameter) dark mica, as a result of which, dating of pyrite was attempted in one instance.

3.3 Fault Rocks

There have been comparatively few attempts to use the K-Ar decay to date fault movements. Previous studies have used K-Ar on fault gouge clays, and Ar-Ar on pseudotachylyte (e.g., Kelley et al., 1994; Kralik et al., 1987), but both techniques were applied to material at least 10⁷ years old. The challenge of constraining the ages of more recent fault movements, from the more common minerals present in Hong Kong's faulted (commonly schistose and mylonitic) rocks such as those used in this study (Table 1, Figure 1), required new approaches and experimental development.

A twofold approach was adopted:

- (i) To indirectly constrain the age of faulting by dating hydrothermal mineralization in the faulted rocks, using the concept that permeable pathways for fluids are often created during active crustal deformation. This strategy was suggested both by the presence of sufficient quantities of pyrite in one of the samples, and by the successful determination of ³⁹Ar and ⁴⁰Ar in a single cube of this mineral in the parallel work on dykes.
- (ii) To directly constrain the age(s) of faulting by identifying extremely small heating events that may be present in the silicate minerals of the faulted rocks. This involved very delicate heating of large samples with a broad beam defocused laser.

4. ANALYTICAL PROCEDURES

To prepare the samples for irradiation, fragments of the appropriate portions of the samples were gently crushed in a mortar and examined under a binocular microscope. Since feldspar is potentially very sensitive to subsequent thermal events, this mineral was separated by hand picking. Several of the fault rock samples yielded feldspar crystals large enough (2-5 mm) to allow very detailed step heating in the low temperature portion of the age spectrum. In addition, fault rock sample HK12078 yielded pyrite grains that were separated in an attempt to date hydrothermal events. However, most of the dyke samples were too fine-grained to allow significant mineral phases to be separated, although HK 9842 yielded small amounts of pyrite and chlorite and a small (0.25 mm diameter) dark mica. Hence, most of the irradiated dyke material consisted of whole-rock chips.

For all samples, the rock chips and crystals were packaged in aluminum foil and loaded into an aluminium canister, together with a number of grains of Fish Creek Tuff sanidine standard (FCT) in the case of the dyke samples, and Taylor Creek Rhyolite sanidine standard (TCR) in the case of the fault rock samples, and irradiated in the McMaster Nuclear Reactor, Hamilton, Ontario, Canada, for a total of 48 Megawatt-hours (approx. 24 hours) for dyke samples and for approximately 0.3 Megawatt-hours (about 10 minutes) for fault rock samples. For the latter samples, a Cd liner was used during the irradiation to avoid production of ⁴⁰Ar, thus eliminating errors from the corresponding correction.

All of the samples and standards were then analyzed as part of five separate sample loadings. In each loading, the samples and standards were placed into holes in an aluminum disk and loaded into the ultra-high vacuum sample chamber within the mass spectrometer inlet system. After pumpdown, the sample chamber and gas extraction line were baked at 150°C for approximately 12 hours for the dyke samples, and 48 hours for the fault rock samples, to achieve low argon blank levels.

The first stage in analysis was to fuse each of the standards in a single heating step, using a 20 watt Spectra-Physics argon-ion laser. The evolved gas was then purified by the combination of a liquid N₂ cold-tra to remove condensable gases and an SAES type 707 Ti-Fe-Zr getter held at 250°C to remove all remaining reactive gases. The remaining noble gas component was inlet into a VG1200 mass spectrometer equipped with an ion multiplier for analysis of argon. The mass spectrometer was operated in static mode, isolated from the pumps during the analysis. All five natural and irradiation-produced argon isotopes (³⁶Ar through ⁴⁰Ar) were measured in 15 successive cycles over about a twenty-minute period, followed by pumping out of the mass spectrometer. Procedural blanks (in which all steps except the laser heating were followed) were performed before each analysis. The resulting argon isotope measurements were reduced using software developed in-house, which included correction for atmospheric contamination and for interfering nuclear reactions resulting from the irradiation, as well as appropriate statistical analysis of the data, including a detailed treatment of error propagation. The J value (essentially the efficiency of ³⁹Ar production from ³⁹K) was calculated for each standard, using an age of 27.84 Ma for the FCT standard. A weighted average of the J values from all standards was used as the J value for the irradiation.

The samples were analyzed by an identical procedure, except that for the whole rock chips, feldspar separates and three of the pyrites, the gas release was done in a series of heating steps. In each heating step, the laser heated the sample for 30 seconds, followed by the gas purification and analysis steps as above. In successive heating steps the laser power was gradually increased until the sample was fused in the final step.

5. ANALYTICAL RESULTS AND INTERPRETATION

5.1 General

The first-order result of any Ar-Ar analysis is the integrated age calculated from the total sample gas released in all step-heated fractions. This is equivalent to the K-Ar age of the sample. The ages are subject to the usual uncertainties of K-Ar dating, in particular to loss of Ar during secondary heating events. Therefore Ar-Ar data are usually interpreted by use of the conventional age spectrum plot of cumulative ³⁹Ar release *vs.* apparent age. The apparent ages are calculated assuming that all of the initial trapped Ar in the sample is atmospheric in composition. If this assumption does not hold, or if recoil of ³⁹Ar during sample irradiation is significant, then the ³⁶Ar/⁴⁰Ar *vs.* ³⁹Ar/⁴⁰Ar correlation diagram is considered to be to be a more precise and flexible tool for interpretation.

5.1.1 Remarks on Whole-rock and Feldspar Analyses

The direct dating approach to more recent fault movements requires a sensitive

potassium-rich chronometer to search for a possible weak, friction-related, heating signal. In principle, a near-zero age, suggestive of a very recent event, may be registered in domains at the surface of the crystal, where the ⁴⁰Ar built up by previous millions of years of ⁴⁰K decay is most easily lost. If a near-zero event can be extracted in the laboratory when a crystal is sequentially heated to higher temperatures, these surface regions should degas in the lowest temperature fractions before the more tightly held K-Ar domains from the interiors of the crystal diffuse out. On the age-spectrum, the record of this event may be recognized by a pattern of fractions, climbing from a near-zero age in the first releases of ³⁹Ar, up to an age more characteristic of the bulk of the sample.

Different mineral components in a rock will react differently to such subtle and transient heating events, and the K-feldspar is typically one of the most easily disturbed radiogenic systems, in particular for Ar-Ar analysis. Therefore, this characteristic pattern was looked for in large single feldspars from three samples, and large whole-rock chips from two of the remaining samples that did not yield appropriate feldspars. These samples were carefully step-heated, focusing on their very low temperature gas releases, to determine: if a pattern climbing from ~0 Ma existed, and; to determine the proportion of the low-age region in the crystal, to assess the magnitude of the effect that a possible signal would have on a mineral in the fault rock.

In typical step-heating analyses in Ar-Ar dating, where perhaps 10 steps may normally be taken, the lowest temperature fraction will therefore comprise about 10% of the total ³⁹Ar released, and will represent a mixture of all the gas extractable up to that point. However, any low-age signals, if present, would probably amount to only a few percent at most. Furthermore the absolute error in age determination is normally a direct function of the amount of argon being measured. Therefore to measure low ages on small proportions of the total sample argon, with reasonably small relative errors, quite large total samples would need to be used. These samples must be heated gently and as uniformly as possible, with a broad-beam, defocused laser beam.

The samples used were single crystals or rock chips, 2-5 mm in diameter. These required long clean-up times to handle the additional gas load, which in turn increased the analytical blanks. These analyses required very careful attention to both the blanks and sample analyses to make precise and accurate measurements of the small quantities of 39 Ar and the 40 Ar/ 36 Ar ratios.

5.1.2 Remarks about Pyrite Analyses

Like many minerals that do not contain potassium, but which may host K-bearing inclusions (*e.g.*, quartz), pyrite is likely to show very low diffusion rates for K, and probably for Ar as well. This would imply that, once the pyrite has formed, the K and Ar of the inclusions would remain relatively firmly trapped within the pyrite crystal, and that the K-Ar age of the inclusions would therefore be resistant to thermal resetting.

A complication for Ar-Ar dating is that tiny, K-rich inclusions, hosted within a K-free pyrite phase, could be highly subject to redistribution of ³⁹Ar by recoil during irradiation. When samples are irradiated with fast neutrons in a nuclear reactor to produce ³⁹Ar from ³⁹K, the products are a ³⁹Ar nucleus and a proton. The proton is violently ejected from the ³⁹Ar

nucleus, causing that nucleus to recoil from the original position of the ³⁹K parent, for a distance of about 0.1mm through the crystal lattice. If the sample contains a microstructure of the order of 0.1mm in size (such as exsolution structures in feldspars, or tiny inclusions), this recoil can carry the product ³⁹Ar atom between K-rich and K-poor sites in the sample. This destroys the correlation between ⁴⁰Ar produced by radioactive decay in nature and ³⁹Ar produced from K in the reactor, the correlation on which the Ar-Ar method depends.

5.2 Dyke Samples

Four whole rock samples of mafic dykes (HK1651, HK9728, HK9842 and HK10981) were analysed.

The age-spectra of the four dyke whole-rocks proved to be complexly discordant and difficult to interpret using conventional age-spectrum diagrams. Much of this discordance is likely to have resulted from ³⁹Ar redistribution between the fine-grained minerals within the Such recoil-induced redistribution destroys the coupling between ³⁹Ar (the surrogate for the parent ⁴⁰K) and ⁴⁰Ar (the daughter) and renders ages calculated from the resulting ⁴⁰Ar/³⁹Ar ratios meaningless. In addition to internal redistribution of ³⁹Ar, such recoil-affected samples may also be subject to overall loss of ³⁹Ar, causing their integrated ages to be biased upwards. However recent research on dating of fine-grained sediments (Hu et al., 1998) has shown how to recognise the effects of recoil on the Ar correlation diagram. In many cases, horizontal line segments joining successive points can identify recoil-afflicted data. Accordingly, the isochron plot was used to interpret the complex step-heating data of these analyses. In order to follow the often complex trajectories of successive fractions on the correlation diagram, it was necessary to analyse an unusually large number of step-heated fractions of the whole-rock samples. Interpretation of the isotope data for the minerals was more straightforward and is reported as plateau plots or integrated ages. In both age plateaux and isochrons, a sequence of successive gas fractions are usually required to lie on a single plateau or isochron, within analytical error. In several cases, however, fractions were excluded from the calculation because of excessive scatter from the trend: such cases are indicated in the discussion below and in Table 2.

Summaries of the analytical data for one mica and four whole rock analyses are contained in Appendix A. The data are displayed graphically in Figures 2 to 14 (In Fig. 2, as in the other Figures, the fractions are labelled by their sequential fraction numbers, as given in Appendix A), and summarized in Table 2.

5.2.1 HK1651

HK1651 was obtained from a 1 m wide mafic dyke, intruding the Tsing Shan Granite (age c.159 Ma (Sewell et al., 2000)) in the North-West New Territories. The whole-rock fragment was analyzed in 42 heating steps and yielded the youngest integrated age of the dykes, at 74.7 ± 0.3 Ma (see Table 2). Its age spectrum (Fig. 2) is quite complex. Over much of the ³⁹Ar release, the ages gently rise to about 75 Ma, very close to the integrated age. The overall impression is of a relatively young sample (approximately 70-80 Ma), but it is difficult purely from the age spectrum to interpret the behaviour of this sample. However, Fig. 2 shows the spectrum divided into regions of varying Ar-isotope behaviour, as inferred

from examination of the argon correlation diagram.

On the 39 Ar/ 40 Ar vs. 36 Ar/ 40 Ar plot, the data display three separate linear segments that yield progressively higher ages (Fig. 3). Two are confined to relatively low temperatures and appear within the first ~20% of the sample's total 39 Ar release. Fractions 1-6 (omitting fraction 2) fit an isochron corresponding to an age of 59.8 ± 4.3 Ma. The initial 40 Ar/ 36 Ar of this isochron is 375 ± 17 , significantly higher than the atmospheric 40 Ar/ 36 Ar ratio of 295.5, represented by the label "Nier" on the 36 Ar/ 40 Ar axis (Fig. 3). This isochron could represent a relatively low-temperature event at about 60 Ma which reset the less retentive sites in the whole rock, without completely degassing the radiogenic 40 Ar already accumulated (hence the high initial 40 Ar/ 36 Ar ratio).

Fractions 7 to 11 form a roughly horizontal array on the correlation diagram (Fig. 3), and could therefore represent the effects of recoil redistribution of ³⁹Ar in this fine-grained whole rock. Since recoil can move ³⁹Ar between phases, but does not affect the ³⁶Ar and ⁴⁰Ar, it produces a horizontal shift along the ³⁹Ar/⁴⁰Ar axis in the diagram.

Fractions 12 to 16 form the second linear segment (Fig. 4) and give a significantly older isochron age of 70.1 ± 0.4 Ma with an initial 40 Ar/ 36 Ar of 294 ± 8 , indistinguishable from atmosphere. Since the initial ratio is atmospheric, these fractions appear as a short plateau on the age spectrum (Fig. 2). These are followed by fractions 17 to 19, lying along a line segment extending at an angle to the isochron, from fraction 16 as a pivot point. Although resembling the "ambichrons" described by Hu et al. (1998), and labelled as such on Fig. 2, it is too short to attach any significance to.

The largest single portion of the gas released (representing ~40% of the total 39 Ar), in fractions 21 to 33 (Fig. 2), appears to represent recoil. In Fig. 5, these fractions show erratic horizontal motion (the signature of recoil) between the 70.1 Ma isochron and an older 75.1 Ma isochron formed by fractions 34 to 39 (omitting fraction 37). These high-temperature fractions define the third linear segment, and give an isochron age of 75.1 \pm 0.8 Ma, a result that is within analytical uncertainties of the integrated age of 74.7 \pm 0.3 Ma for this sample. The initial 40 Ar/ 36 Ar ratio, at 353 \pm 73, is not distinguishable from that of the atmosphere.

The coincidence of the integrated and final, high-temperature isochron ages (Table 2) suggests that this may be the age of formation of this sample, and that recoil redistributed ³⁹Ar in the sample, but produced no net loss of ³⁹Ar. Alternatively, but perhaps less probably, this age could represent a metamorphic event in which the resetting of the argon systematics was total, leaving no vestige of any earlier event in the argon record.

5.2.2 <u>HK9728</u>

The whole-rock sample HK9728 was obtained from a 1 m wide dyke intruding the High Island Formation (age c. 140 Ma (Sewell et al., 2000)) in the North-East New Territories. This sample had the highest integrated age of the four whole rocks in this study, at 105.3 ± 0.5 Ma. On the age spectrum (Fig. 6), the high integrated age results from a step-like rising of ages over about the last third of the ³⁹Ar release. This corresponds to a change from a high-Ca/K phase or phases, contributing the earlier portion of the spectrum, to

a low-Ca/K material, providing the step-like portion. It is possible that the steps represents an event at \geq 160 Ma, followed by almost total loss of argon from the rock at about 100 Ma. However the correlation diagram provides another view of these data.

The data form a V-shaped pattern on the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar plot (Fig. 7). Fractions 3 to 7 (omitting fraction 6) form a straight-line segment in the upper arm of the V, and give an apparent age of 99.8 \pm 0.5 Ma with an initial 40 Ar/ 36 Ar of 297 \pm 6. The lower arm of the V is made up of higher temperature fractions (9 to 15). However, rather than being perfectly linear, this arm curves gently upward, giving it an ambiguous status. A line can be fitted to these data in several plausible ways. For instance, fractions 9 to 16, excluding fraction 15, yielded an age of 93.8 \pm 1.9 and an initial $^{40}\text{Ar}/^{36}\text{Ar}$ of 715 \pm 41 The $\Sigma S/(n-1)$, a measure of goodness of fit, is close to its expected value of 1.0 A subset of these, fractions 10 to 12, very closely fit a line (Fig. 7) giving an age of 87 \pm 12 Ma and an initial 40 Ar/ 36 Ar of 908 \pm 295 (Table 2). These two isochrons are mutually consistent, because the shorter segment of fractions 10 to 12 yields higher errors in both age and initial ratio (because of the greater uncertainty in extrapolating this short segment to intercept the two axes). Both isochron ages are younger than the integrated age of 105.3 ± 0.5 Ma. However the apparent curvature of fractions 9 to 16, if it is real, suggests the involvement of at least three reservoirs rather than the two required by the isochron model, which may not therefore be strictly applicable.

5.2.3 HK9842

HK9842 was obtained from a 1 m wide dyke cross-cutting rhyolite dykes (age c. 146 Ma, Sewell et al., 2000)) from the northeast of Lantau Island. This sample was the only one from which useful mineral separates were obtained. In addition to the whole rock, which was analyzed in 40 heating steps, individual grains of dark mica, pyrite and chlorite were analyzed. The mica, despite its very small size (0.25 mm diameter) was analyzed in eight heating steps. The other two minerals were too small in size and too low in K to step heat, and were analyzed by one-step total fusion.

In spite of the detailed step heating of the whole rock fragment into a total of 40 fractions, this sample showed very few convincing lineations on the ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar plot (Fig. 8). Most of the fractions (corresponding to more than 60% of the ³⁹Ar) appear to have been affected by ³⁹Ar recoil, as shown by erratic horizontal trajectories and the absence of linear segments on the correlation diagram. For this reason, the best age estimate may be given by its integrated age of 91.0 ± 0.4 Ma. However, because of the possibility of overall loss of ³⁹Ar during irradiation, minerals separated from the rock may provide more reliable ages. Single-crystal integrated ages for pyrite and chlorite are 88 ± 11 (P22-119) and 80.8 ± 4.9 (P22-120) Ma, respectively (Table 2). These are K-poor phases and had to be fused in single shots. On the other hand, although mica separated from the rock (P22-107) was very small, it could be step-heated to yield eight age fractions. The mica age spectrum (Fig. 10) displays a plateau (fractions 2 to 4) constituting 63% of the ³⁹Ar released, and corresponding to an age of 108.3 ± 1.6 Ma. This result is in close agreement with the integrated age for the mica of 106.2 ± 1.7 Ma. However, small micas in this size range may also be subject to ³⁹Ar recoil loss, which would increase their apparent Ar-Ar age. On Figure 10, two curved lines are sketched, suggesting the resemblance of this mica to the "two-faced" mica discussed by York & Lopez-Martinez (1986), and indicating diffusional loss of argon.

5.2.4 HK10981

Sample HK10981 was obtained from a 1 m wide dyke intersected in a borehole on Ma Wan Island. The dyke formed the margin of a quartzphyric rhyolite dyke (age c. 146 Ma (Sewell et al., 2000)). A whole rock sample was heated in 18 steps, and gave an integrated age of 96.2 ± 0.4 Ma. The age spectrum, while appearing more straightforward than the other whole rocks (Fig. 11), shares with HK9728 the upward-rising portion at the end of the spectrum (Fig. 6). Although the rise is less marked than in HK 9728, the similarity of the two samples extends to their correlation diagrams.

Step-heated fractions of whole rock form an isotopic pattern on the 39 Ar/ 40 Ar vs. 36 Ar/ 40 Ar plot (Figs. 12 and 13) that is reminiscent of the V distribution of whole rock HK9728 (Fig. 7). Fractions from the low-temperature arm of the V (fractions 4-6) give an age of 89.3 \pm 0.9, with an initial ratio within 2 σ of that for the atmosphere, at 403 \pm 56. Nine high temperature fractions (10-18) give an isochron age of 86.6 \pm 1.8 Ma with a distinctly elevated initial 40 Ar/ 36 Ar of 998 \pm 163. Both ages are significantly younger than the integrated age of 96.2 \pm 0.4 Ma.

5.2.5 Summary

A summary histogram of all whole rock and mineral ages for the dykes is presented in Figure 14. Each age contributes equal area Gaussian to the total. The width of the Gaussian, and so its height, reflects the error of that age. These result are considered further in Section 6.

5.3 Fault Rock Samples

Five samples of fault rocks (HK3419, HK7284, HK7729, HK12078 and HK12086), were analysed.

Unlike the situation for the dykes that were analysed, the correlation diagrams for the fault rocks offered no additional insight into the most recent, low-temperature events, on which the study focussed. In particular, as the study was looking for very faint traces of relatively subtle events (compared to the more pervasive heating events usually recorded in Ar-Ar analysis), it was necessary to interpret the data on a step-by-step basis, rather than in a broader search for plateaux or correlation lines. Therefore the interpretations presented must be regarded as tentative. Apparently, no previous study had attempted to recover such faint traces of recent, low-temperature events. Given this, and the absence of independent dating of possible fault activity by other techniques, the information recovered from these samples should be regarded only as suggestive. Nevertheless it is felt that the results are indicative of the potential of the methods used, if applied in a more extensive and controlled study.

The data and interpretations are presented in a case-by-case format, beginning with the data for pyrite crystals separated from HK12078, and then the step-heating data for the whole rocks and minerals from the five samples analyzed.

Summaries of the analytical data for one pyrite, three K-feldspars, and two whole rock analyses, are contained in Appendix B. The data are displayed graphically in Figures 15 to 31, and summarized in Tables 3 to 5.

5.3.1 <u>Pyrite from HK12078</u>

Pyrite is not a conventional material for K-Ar analysis; the only published study known prior to this study were from earlier work by the AGL, but carried out by pre-laser techniques (York et al., 1982). However a single-crystal pyrite had been analysed by laser fusion in the dyke portion of this study, which produced the first known single-crystal Ar-Ar analysis of pyrite. Since pyrite mineralization may occur in the hydrothermal environment associated with fluid movement along faults, its potential in dating fault activity was explored.

Pyrite is not a K-bearing phase, and any significant potassium (with its daughter argon) must be sited in inclusions within the pyrite crystals. The occurrence of such inclusions is not guaranteed. Also, their abundance and nature could vary on a crystal to crystal basis, as could the actual formation time of pyrite grains. Therefore, single-crystal analysis is a logical tool to explore pyrite geochronology. The measured Ar-Ar age of the inclusions should correspond to that of their host pyrite.

Separated pyrite cubes from HK12078, an altered coarse-grained granite (the Sha Tin Granite) from a fault in the Rambler Channel, ranged from 0.2 to 0.7 mm in diameter. Twelve single grains were analysed, of which nine were fused in a single step and 3 were subjected to step-heating analysis. Because of the small amounts of gas released from the pyrite samples, only one grain yielded as many as nine steps; the other two grains gave only 2 and 5 steps respectively. The age spectra of the step-heated pyrites were not very coherent, and are considered to have been largely affected by recoil, with possible effects of multiple generations of pyrite and/or inclusions. Therefore the gas fractions from the individual steps were mathematically combined to yield integrated age data for the step-heated pyrites. Table 4 shows the single-step and integrated ages for the 12 pyrite crystals. The weighted mean age of 11 of the crystals, deduced from their total fusion ages and their integrated ages from the 3 step-heating runs, is 78.5 ± 2.8 Ma. The single outlier, P23-21 has a significantly younger total-gas age of 44.2 ± 2.1 Ma.

The ages of the 12 pyrites are summarized in Figure 15. This plot is an age histogram in which each of the 12 ages and its associated error is used to generate a corresponding bell-shaped gaussian probability density curve. Each curve encloses the same area, so that a small error yields a narrow but high gaussian curve, while a large error gives a broad but low curve. The curve plotted in Figure 15 was then generated by summing the 12 individual gaussian curves to yield a complex curve which shows the overall distribution of ages and errors in the population. For instance, the outlier at 44.2 ± 2.1 Ma shows up as an almost isolated gaussian at the left of the Figure, and demonstrates the shape and size of a single gaussian contributor to the sum.

No single-step pyrite or significant gas fraction within the step-heated pyrites yielded an age of less than 35 Ma. Thus, although the pyrite ages significantly post-date the presumed crystallization of the Sha Tin Granite at 146 Ma (Sewell et al., 2000), no sulphide generations could be attributed to relatively recent faulting episodes.

5.3.2 HK7284

A whole rock sample was obtained from HK7284, a weakly sheared coarse ash crystal tuff from the Tai Mo Shan Formation. The results from the first six steps of a step-heating run are shown in Figure 16. The errors in age are relatively large, and while two of the steps are within 2σ of zero age, all of the age steps are well within 2σ of 90 Ma. The large errors result from the surprisingly small amount of Ar extracted from the sample, although by the end of the sixth step, the sample had been significantly heated. This sample therefore appeared to show no evidence of young (a few Ma) ages as was seen in other samples (see below), and further study, including completion of the step-heating run, was not pursued.

5.3.3 K-Feldspar from HK12086

The age spectrum of feldspar (P23-137) extracted from HK 12086, a strongly sheared coarse-grained granite (Sha Tin Granite) from the Tolo Channel Fault, is shown in Figure 17, and an expanded view of the first 6.4% of the released ³⁹Ar in Figure 18. (The expanded spectrum here and in subsequent Figures still has an abscissa labelled from 0 to 1, but the fraction of ³⁹Ar in the expanded diagrams is given in the upper right corner.) The spectrum climbs from within 1σ of zero (12 ± 14 Ma) in the first fraction (0.3% of ³⁹Ar) to 35 Ma in the first 6.4% of evolved ³⁹Ar (Fig. 18). Within this interval, small amounts of ³⁹Ar are present in the first 3 fractions and form an age plateau within their respective errors (plateau age = 17 ± 12 Ma). However, their corresponding 40 Ar/ 36 Ar ratios are not significantly more radiogenic than present atmosphere, and the relatively large uncertainties in the small 39 Ar signals preclude precise age determination for this portion of the spectrum.

Significant quantities of radiogenic 40 Ar (*i.e.*, sample 40 Ar) 36 Ar ratios distinguishable from the present atmospheric ratio of 295.5, and therefore ages distinguishable from zero) are first detected starting at fraction 4, which yields an age of 31 ± 6 Ma. Most of the spectrum is in the region of 60-80 Ma, consistent with ages frequently observed in these samples (*cf.* below). The meaning of the rise to 180 Ma in the final fraction is obscure, but may reflect a recoil component.

5.3.4 K-Feldspar from HK12078

Over 99% of the age spectrum of a K-feldspar (P23-20), extracted from HK 12078, an altered coarse-grained granite (Sha Tin Granite) from a fault in the Rambler Channel, lies at ages of 60 Ma or more, rising across the spectrum to ages around 70 Ma (Figure 19). This sample therefore appears to be virtually unaffected by younger events. Nonetheless, the first step, representing only 0.08% of the total evolved 39 Ar, gives an age 4 ± 8 Ma (Figure 20). Note that any conventional Ar-Ar analysis would utterly fail to reveal any sign of this tiny initial low-age fraction.

The very steep rise to an approximate age plateau is precisely the type of spectrum we would expect of a sample transiently and only moderately heated during fault movement. The tiny size of the initial, low-age gas fraction points up the challenge of accurately measuring such minute quantities of argon. Despite the fact that this first fraction is indistinguishable from zero age, the value of 4 ± 8 Ma is interesting in terms of the ages yielded by the following two samples.

5.3.5 K-Feldspar from HK3419

The age spectrum of a feldspar extracted from the fault rock within the Tai Mo Shan Formation at the base of a thrust fault, shows the most extended low-age portion of any of the samples studied (Figure 21). The first three fractions have 40 Ar/ 36 Ar ratios that are significantly higher than modern atmosphere, but their 39 Ar levels are only slightly higher than those of the blank, and thus their ages are poorly constrained. In all, these three fractions represent less than 0.2% of the total sample 39 Ar. The three subsequent fractions 4-6 yield significantly more 39 Ar (amounting to 4.6% of the total) and uniform ages averaging to 4.12 \pm 0.19 Ma. They thus form a rather precise mini-plateau prior to the climb to older ages, starting with fraction 7 (Figure 22).

Almost 70% of the ³⁹Ar in this sample lies in a slightly ragged plateau around the ubiquitous 80 Ma age (Figure 21; the drop in age in the final 1% may well be a recoil effect). But despite the reasonably well-defined plateau, this sample has lost considerable radiogenic argon. Furthermore, the shape of the age spectrum is not that of a simple diffusional loss, as can be seen from the broad low-age region. Rather than a smooth rise from low ages to the plateau, over 10% of the sample ³⁹Ar is released with ages less than 10 Ma. This tends to support the reality of the low-age plateau at about 4 Ma.

5.3.6 Whole Rock from HK7729

The spectrum of whole rock sample, extracted from a mylonite within the Tai Mo Shan Formation at the base of the Tiu Tang Lung Thrust, rises to an age greater than 90 Ma after only 2.9% of the 39 Ar was released (Figure 23). The very low-temperature interval prior to 90 Ma consists of 9 steps that climb in age in a discontinuous fashion. The first fraction has a 40 Ar/ 36 Ar ratio within error of the atmospheric value and gives an apparent age within error of zero. The ensuing 4 fractions form a short plateau with an age of 3.0 ± 0.2 Ma, after which the spectrum jumps to ~8 Ma in the next two fractions (Figure 24). Two fractions around 30 Ma comprise less than 0.5% of the sample 39 Ar, after which the age rises sharply to over 90 Ma (Figure 23).

The initial region of this spectrum bears a strong resemblance to that of the HK3419, from the same formation, but from a different fault zone, except that the initial portion is compressed by about a factor of ten in ³⁹Ar. If feldspar within this whole-rock sample is responsible for the behaviour, it demonstrates that feldspar is indeed a sensitive recorder of low-temperature events.

The unusual bowl-shape of the central part of the age spectrum should not be taken too literally. This sample contained massive amounts of argon, and in order to measure its total ³⁹Ar content, the mass spectrometer was operated in ranges far in excess of the calibrated levels. Therefore, while the proportions of total sample ³⁹Ar are at least approximately correct, the isotopic ratios and therefore the ages are highly suspect in the very large middle fractions (at least fractions 12-16). As fraction sizes again approached the smaller, better-calibrated region, the ages again approach 90 Ma. Nevertheless this polymineralic whole rock may exhibit some real anomalies in its behaviour.

6. CONCLUSIONS

Ar-Ar dating of the whole rocks and minerals from the dykes yielded four possible whole-rock and five possible mineral ages between 60 and 108 Ma (Table 2). Their distribution is plotted on Figure 14, which displays the ages as the sum of gaussian curves of identical areas for each analysis. The solid area represents the whole-rock ages, and the superimposed outlined area, the mineral ages.

The youngest sample in the study was HK1651, for which all three possible ages, and the integrated age, are younger than any ages produced from the other samples. The oldest of these ages is about 75 Ma. Whether this represents an emplacement age or the time of pervasive metamorphism cannot be directly determined.

The oldest age in any of the samples is recorded by the mica, which gives a plateau age of 108 Ma. This may provide the best estimate of dyke emplacement, although there is a strong possibility of recoil loss of ³⁹Ar in such small biotite. If this age is excluded, along with those from HK1651, the remaining ages cluster between 87 and 100 Ma for the whole rocks, with the chlorite age bringing the range down to 81 Ma if the minerals are included. There is therefore little direct evidence from the argon system for any events older than about 100 Ma affecting these rocks. Either they were emplaced by this time, or pervasive metamorphism had wiped out virtually all trace of their emplacement age. However, it is also possible that all of the ages reflect overprinting events. Regardless, the record of two or more ages in a single whole rock sample shows that these dykes have been strongly affected by metamorphism. Metamorphic disturbance is also suggested by the dip to 86 Ma from the plateau age of 108 Ma in the mid-to high temperature portion of the mica age-spectrum (York & López-Martinez, 1986). A similar event appears to be recorded by the chlorite and pyrite, which also give ages significantly younger than the mica plateau. However, the significance of Ar-Ar ages in the chlorite and pyrite are uncertain.

The very low concentrations of K in pyrite and chlorite make single-grain dating of these phases difficult. The first Ar-Ar dating of pyrite (York et al., 1982) used bulk separates from Archean rock, and showed that the age corresponded to the time of major orogeny. Pyrite from HK9842 represented the first known analysis of a single crystal, and although its age is imprecise, because of the extremely small gas evolved from a tiny cube, it corresponds to the chlorite age and may similarly record metamorphism in the dyke.

The interpretation of the whole-rocks shows that, in spite of pervasive discordance apparent in the age-spectra, well-defined ages can be obtained from three of the four whole rocks, using the isochron diagram. In each sample, the proportion of the step-heating data forming lineations on this plot appeared to be inversely proportional to the amount of recoil-affected data. The most heavily affected sample, HK9842, having almost three-quarters of its fractions being affected by recoil, yielded no definitive line segments. The isochron ages from the straight line segments of the whole rock data range from 60 to 87 Ma. Ages derived from high temperature segments for three of the dykes correspond roughly with the chlorite/pyrite peak, possible reflecting the same overprinting episode (Figure 14). If this is the case, then the whole-rocks have experienced significant resetting of their K-Ar systems, and/or easily reset K-rich minerals dominate their mineralogy.

Five samples from fault zones were examined, particularly to determine whether any signature of relatively recent events could be found in the Ar-Ar systematics. Since this was the first study of its kind, it was necessary to explore innovative approaches. One approach, using pyrite crystals found in one sample, attempted to date hydrothermal activity presumed to be associated with the fault zone, and yielded no ages younger than about 30 Ma. The other approach, using very subtle age data contained in the first few percent of argon released during laboratory heating, was far more encouraging. Four of the samples showed evidence of a 34 Ma event. The 34 Ma event appears to accord well with an important tectonic event in the region, marking the ignition of sea-floor spreading in the South China Sea. Two samples also showed evidence of events at about 10 and 3-4 Ma. These may well represent the effects of tectonic activity along these faults at these times.

The age-spectra of the four fault rock samples dominated by >50 Ma fractions indicative of their early evolution, also contained low temperature portions that pass close to zero-age. This shows that the low temperature portions of these fault rocks are capable of recording their much more recent geological history in addition to their igneous/metamorphic crystallization ages. The imprint of these late-stage events appears to be very minor: for three of the samples, this near-zero-age portion comprising less than 2% of the total sample ³⁹Ar volume. The individual step ages of the low temperature portions of the age spectra are summarized for each sample in Figures 25-28 (which are age histograms of the type used above for the pyrite data shown in Figure 15). In Figure 29, these low-temperature steps are summed for all four of the samples, while Figure 30 shows an enlarged view of the first 20 Ma of Figure 29.

The climbing patterns of younger ages often seen on plateau diagrams for K-feldspar frequently conform to models of diffusion loss of Ar. However, the low-temperature portions of these samples do not resemble the expected smoothly climbing patterns characteristic of diffusive Ar loss. Instead, the profiles display an apparently significant step structure (Figure 31, which displays the low-temperature portions of the four age spectra on one diagram). Thus, despite very different fractions of gas release being involved, all four samples show pronounced discontinuities at about 34 Ma (illustrated by a dotted line in Figure 31). The two Tai Mo Shan Formation samples both display similar breaks at about 10 Ma and 3-4 Ma (also indicated by dotted lines in Figure 31). These features are summarized in Table 5.

In summary, with respect to the fault rocks:

- (i) A small but significant event at about 34 Ma is recorded by all four fault rocks. This age approximates to the age of opening (sea-floor spreading) of the South China Sea.
- (ii) The most significantly affected material analyzed (as shown by the proportion of total argon released; Table 5) was the K-feldspar from the vicinity of the Tuen Mun Fault. Whether this was due to its location with respect to this fault, or due to mineralogical controls, or whether the Tuen Mun Fault was more active at that time than the other three faults, will require further work to resolve.

(iii) Events at 10 and 3-4 Ma are seen in the samples from both the Tuen Mun Fault and Tiu Tang Lung Thrust, but not in the materials from the Tolo Channel Fault or the fault in the Rambler Channel. This may indicate that only the Tuen Mun Fault and the Tiu Tang Llung Thrust were active in those episodes.

In three out of four of the age spectra, the first gas fractions that contain measurable ³⁹Ar also gave ⁴⁰Ar/³⁶Ar ratios within error of the atmospheric value. This pattern is consistent with more recent, late Pleistocene to Holocene, fault activity. The effect of this activity on these minerals is too weak to constrain temporally at this point. However, in future it may be possible to increase the signal by sampling closer to fault planes, or to reduce background noise by improved analytical techniques.

In conclusion, it is suggested that these measurements indicate strongly that valuable evidence of relatively recent fault movements may be encoded in the very smallest fractions of argon released in step-heating analyses, and that further, more detailed studies are warranted.

7. REFERENCES

- Allen, P.M and Stephens, E.A. (1971). <u>Report on the Geological Survey of Hong Kong</u>. Institute of Geological Sciences, London, 107 p.
- Argon Geochronology Laboratory (AGL) (1998). Report to Hong Kong Geological Survey on ⁴⁰Ar/³⁹Ar Laser Microprobe Dating of Samples of HK856. Department of Physics, University of Toronto, Ontario, Canada, 6 p.
- Argon Geochronology Laboratory (AGL) (2000a). Report to Hong Kong Geological Survey on 40Ar/39Ar Laser Microprobe Dating of Samples from Hong Kong. Phase II:

 Mafic Dykes HK1651, HK9728, HK9842 and HK10981. Department of Physics, University of Toronto, Ontario, Canada, 32 p.
- Argon Geochronology Laboratory (AGL) (2000b). Report to Hong Kong Geological Survey on 40 Ar/39 Ar Laser Microprobe Dating of Samples from Hong Kong. Phase III: Fault Rocks HK3419, HK7284, HK12077, HK12078 and HK12086. Department of Physics, University of Toronto, Ontario, Canada, 42 p.
- Hu, Q., Evensen, N.M., Smith, P.E. & York, D. (1998). A world in a grain of sand: regional metamorphic history from ⁴⁰Ar/³⁹Ar laser probe analyses of Proterozoic sediments from the Canadian shield, <u>Precambrian Research</u>, Vol. 91, pp 287-294.
- Kelley, S.P., Reddy, S.M. & Maddock, R. (1994). Laser-probe ⁴⁰Ar/³⁹Ar investigation of a pseudotachylyte and its host rock from the Outer Isles Thrust, Scotland. <u>Geology</u>, Vol. 22, pp 443-446.
- Kralik, M., Klima, K. & Riedmüller, G. (1987). Dating fault gouges. <u>Nature</u>, Vol. 327, pp 315-317.

- Noller, J.S., Sowers, J.M. & Lettis, W.R. (2000). <u>Quaternary Geochronology, Methods and Applications</u>. American Geophysical Union, Washington DC, 582 p.
- Sewell, R.J. & Campbell, S.D.G. (1981). <u>Absolute Age Dating of Hong Kong Volcanic and Plutonic Rocks, Superficial Deposits, and Faults.</u> GEO Report No. 118, Geotechnical Engineering Office, Civil Engineering Department. 153 p
- Sewell, R.J., Campbell, S.D.G., Fletcher, C.J.N., Lai, K.W. & Kirk, P.A. (2000). <u>The Pre-Quaternary Geology of Hong Kong</u>. Geotechnical Engineering Office, Civil Engineering Department, Government of HKSAR. 181 p.
- York, D. & López-Martinez, M. (1986). The two-faced mica. <u>Geophysical Research</u> <u>Letters</u>, Vol.13, part 9, pp 973-975.
- York, D., A., Masliwec, P., Kuybida, J.A., Hanes, C.M., Hall, W.J., Kenyon, E.T.C., Spooner, E.T.C. & Scott, S.D. (1982). ⁴⁰Ar/³⁹Ar dating of pyrite. Nature, Vol. 300, No. 5887, pp 52-53.

LIST OF TABLES

Table No.		Page No.
1	Samples from Hong Kong Geological Survey Rock Archive Analyzed in this Study	24
2	Ar-Ar Data for Four Hong Kong Mafic Dykes	25
3	Summary of Analyses of Fault Rocks	26
4	Ar-Ar Data for Single Pyrite Crystals from Fault Rock HK12078	27
5	Low-temperature Events Recorded in Hong Kong Fault Samples	28

Table 1 - Samples from Hong Kong Geological Survey Rock Archive Analyzed in this Study

HK No	East	North	Sheet	Final Name	Locality
HK1651	811945	825620	5SE	DOLERITE	SIU LANG SHUI
HK9728	856700	825150	8SE	BASALT	HIGH ISLAND FORMATION
HK9842	821660	820200	10NW	LAMPROPHYRE	PENNY'S BAY
HK10981	824011	822973	10NE	BASALT	MA WAN
HK856	814270	828889	5SE	TUFF	TUEN MUN
HK3419	831700	842710	3NW	TUFF MYLONITE	KONG NGA PO
HK7284	833625	842020	3NW	FINE ASH LITHIC CRYSTAL METATUFF	HA SHAN WAI WAT
HK7729	842770	841170	3SE	SCHISTOSE METATUFF	WU KAU TANG
HK12078	830065	822390	10NE	GRANITIC MYLONITE	RAMBLER CHANNEL FAULT
HK12086	837583	827241	7SE	GRANITIC MYLONITE	SHATIN BH-3, DEPTH:34.42 - 34.62

Table 2 - Ar-Ar Data for Four Hong Kong Mafic Dykes

HK Sample No.	U of T Sample No.	Sample Type	No. of steps	Integrated Age	³⁷ Ar/ ³⁹ Ar	Points Fitted (N)	Isochron Age (Ma)	⁴⁰ Ar/ ³⁶ Ar Initial	$\frac{\Sigma S}{(n-2)}$
HK1651	P22-413	WR	42	74.7 ± 0.3	0.482 ± 0.002	1-6 (del.2) (5)	59.8 ± 4.3	375 ± 17	0.41
(in Tsing Shan Granite, NW New Territories)						12-16 (5)	70.1 ± 0.4	294 ± 8	0.55
,						34-39 (del.37) (5)	75.1 ± 0.8	353 ± 73	0.34
HK9728	P22-116	WR	16	105.3 ± 0.5	1.136 ± 0.003	3-7 (del.6) (5)	99.8 ± 0.5	297 ± 6	1.28
(in High Island Fm., NE New Territories)						9-16 (del.15) (7)	93.8 ± 1.9	715 ± 41	1.19
,						10-12 (3)	87 ± 12	908 ± 295	0.06
HK9842	P22-108	WR	40	91.0 ± 0.4	0.754 ± 0.001				
(cross-cuts rhyolite dykes, NE Lantau)	P22-107	Mica	8	106.2 ± 1.7	0.234 ± 0.006	2-4 (3)*	108.3 ± 1.6*	63% ³⁹ Ar*	
	P22-119	Pyrite	1	88 ± 11	11.0 ± 0.1				
	P22-120	Chlor	1	80.8 ± 4.9	46.9 ± 0.4				
HK10981	P22-327	WR	18	96.2 ± 0.4	0.829 ± 0.003	4-6 (3)	89.3 ± 0.9	403 ± 56	0.17
(qtzphyric dyke margin Ma Wan)						10-18 (9)	86.6 ± 1.8	998 ± 163	0.37
Notes. *= calculated for plateau									

Table 3 - Summary of Analyses of Fault Rocks

HK No.	Fault	Host Rock	Host Age	Sample Rock Type	Analysis	Type	Steps
HK3419	Base of Tuen Mun thrust	Tai Mo Shan Fm.	164 Ma	Mylonite	P23-124	Plagioclase	38 [30]
HK7284		Tai Mo Shan Fm.	164 Ma	weakly sheared crystal tuff	P23-125	WR	6 (partial)
HK7729	Base of Tiu Tang Lung thrust	Tai Mo Shan Fm.	Early Cret.	schistose metatuff mylonite	P23-126	WR	24 [22]
HK12078	Fault in Rambler Channel	Sha Tin Granite	146 Ma	altered granite	P23-06	Pyrite	1
					P23-08	Pyrite	1
					P23-20	K feldspar	25 [23]
					P23-21	Pyrite	1
					P23-22	Pyrite	1
					P23-23	Pyrite	1
					P23-24	Pyrite	1
					P23-25	Pyrite	1
					P23-36	Pyrite	1
					P23-37	Pyrite	2
					P23-38	Pyrite	1
					P23-39	Pyrite	5
					P23-40	Pyrite	10 [9]
HK12086	Tolo Channel Fault	Sha Tin Granite	146 Ma	strongly sheared	P23-137	Plagioclase	22 [18]
						Total	141 [124]

Table 4 - Ar-Ar Data for Single Pyrite Crystals from Fault Rock HK12078

Sample No.	No. Steps	Integrated Age
P23-06	1	88 ± 14
P23-08	1	85 ± 37
P23-21	1	44.2 ± 2.1
P23-22	1	74 ± 13
P23-23	1	77.5 ± 3.9
P23-24	1	77.3 ± 6.3
P23-25	1	66 ± 9
P23-36	1	78 ± 8
P23-37	2	92.4 ± 3.0
P23-38	1	84.9 ± 2.8
P23-39	5	94 ± 7
P23-40	9	70.6 ± 1.8
weighted mean	11	78.5 ± 2.8

Table 5 - Low-temperature Events Recorded in Hong Kong Fault Samples

Heat Deals	Fault	HK Sample No.	Material	3-4 Ma	a event	vent 10 Ma e		event 34 Ma eve	
Host Rock	Fauit		Analyzed	f	f_c	f	f_c	f	f_c
Tai Mo Shan Fm.	Tuen Mun Fault	HK3419	K-Fdsp	4.4	4.6	4	14	9	26
	Tiu Tang Lung Fault	HK7729	WR	1.2	1.2	1.3	2.5	0.3	2.9
Sha Tin Granite	Fault in Rambler Channel	HK12078	K-Fdsp					0.7	0.8
	Tolo Channel Fault	HK12086	K-Fdsp					1.1	1.8

Legend:

percent of total ³⁹Ar in this age fraction cumulative percent of total ³⁹Ar, including this age fraction

LIST OF FIGURES

No.		Page No.
1	Locations of Mafic Dyke and Fault Rock Samples Used in Study	32
2	Argon Age Spectrum of Mafic Dyke HK1651 Whole Rock. Numbers Identify Individual Gas Fractions. On Basis of Correlation Diagrams (Figures 3-5) Portions of Spectrum Are Identified as Isochrons or Ambichrons (Respectively Lines of Negative or Positive Slope), or Resulting from Recoil of ³⁹ Ar (Horizontal Lines).	33
3	³⁶ Ar/ ⁴⁰ Ar vs. ³⁹ Ar/ ⁴⁰ Ar Correlation Diagram of Mafic Dyke HK1651 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions (See also Figure 4).	33
4	Detail of Figure 3 for Fractions 11-42 (See also Figure 5). Isochron Fitted to Points 12-16 Yields Age of 70.1 ± 0.4 Ma (See Table 2).	34
5	Detail of Figure 3 for Fractions 15-42 (see also Figure 4)	34
6	Argon Age Spectrum of Mafic Dyke HK9728 Whole Rock. Numbers Identify Individual Gas Fractions. Regions of Ar Release from High and Low Ca/K Phases, as Indicated by ³⁷ Ar/ ³⁹ Ar Ratios, Are Labelled.	35
7	36 Ar/ 40 Ar vs. 39 Ar/ 40 Ar Correlation Diagram of Mafic Dyke HK 9728 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions. Note V-shaped Array of Points. Isochron Fitted to Points 10-12 Yields Age of 87 \pm 12 Ma (See Table 2).	35
8	Argon Age Spectrum of Mafic Dyke HK 9842 Whole Rock. Numbers Identify Individual Gas Fractions. Region of Ar Release from Highly Recoil-affected Phases Is Labelled.	36
9	³⁶ Ar/ ⁴⁰ Ar vs. ³⁹ Ar/ ⁴⁰ Ar Correlation Diagram of Mafic Dyke HK 9842 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions, except in Region of Ar Release from Highly Recoil-affected Phases, in Lower Right Hand of Figure. Note Late Fractions Revert towards Modern Atmosphere.	36

No.		Pag No.
10	Argon Age Spectrum of Mica from Mafic Dyke HK9842. Number Identifies Fifth Gas Fraction. Dashed Lines Suggest Two-phase Ar-retention (cf. York & Lopez-Martinez, 1986).	37
11	Argon Age Spectrum of Mafic Dyke HK10981 Whole Rock. Numbers Identify Individual Gas Fractions. Interpretation Based on Correlation Diagrams (Figures 12-13) as for Figure 2.	37
12	³⁶ Ar/ ⁴⁰ Ar vs. ³⁹ Ar/ ⁴⁰ Ar Correlation Diagram of Mafic Dyke HK10981 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions 3-18 (See also Figure 13).	38
13	Detail of Figure 11 for Fractions 3-12. Note V-shaped Array of Points, as on Figure 7. Isochron Fitted to Points 10-18 Yields Age of 86.6 ± 1.8 Ma (See Table 2).	38
14	Summary Histogram of All Mafic Dyke Whole-Rock and Mineral Ages. Each Age Contributes Equal Area Gaussian to Total, Width of Gaussian (and so its Height) Reflects Error of that Age.	39
15	Summary Histogram of Pyrite Ages for Fault Rocks. Each Age in Table 3 Contributes Equal Area Gaussian to Total, Width of Gaussian (and so its Height) Reflects Error of that Age.	40
16	Argon Age Spectrum of Initial Fractions of Fault Rock HK7284 Whole Rock. Number Identifies Fifth Gas Fraction. Spectrum Shows No Sign of Young, Low-temperature Events	40
17	Argon Age Spectrum of Feldspar in Fault Rock HK12086. Numbers Identify Individual Gas Fractions. (See also Figure 18).	41
18	Detail of Figure 17, Showing Fractions 1-5, Representing First 6.4% of Sample ³⁹ Ar.	41
19	Argon Age Spectrum of K-Feldspar in Fault Rock HK12078. Numbers Identify Individual Gas Fractions. (See also Figure 20)	42
20	Detail of Figure 19, Showing Fractions 1-3, Representing First 5.5% of Sample ³⁹ Ar.	42

Figure No.		Page No.
21	Argon Age Spectrum of K-Feldspar in Fault Rock HK3419. Numbers Identify Individual Gas Fractions. (See also Figure 22).	43
22	Detail of Figure 21, Showing Fractions 1-5, Representing First 14.1% of Sample ³⁹ Ar.	43
23	Argon Age Spectrum of Fault Rock HK7729 Whole Rock. Numbers Identify Individual Gas Fractions. (See also Figure 24).	44
24	Detail of Figure 23, Showing Fractions 1-9, Representing First 2.6% of Sample ³⁹ Ar. Number Identified Fifth Gas Fraction. Fractions 8 and 9 Are off Vertical Scale	44
25	Summary Histogram of Ages of First 16 Ar Fractions in Feldspar from Fault Rock HK3419. Age Interpretation as for Figure 14.	45
26	Summary Histogram of Ages of First 10 Ar Fractions in Feldspar from Fault Rock HK7729. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.	45
27	Summary Histogram of Ages of First 16 Ar Fractions in Feldspar from Fault Rock HK12078. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.	46
28	Summary Histogram of Ages of First 16 Ar Fractions in Feldspar from Fault Rock HK12086. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.	46
29	Summary Histogram of Ages in Figures 25-28. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.	47
30	Detail of Figure 29 Showing 0-20 Ma Region of Horizontal Axis. Age Interpretation as for Figure 14. Note Clusters of Ages at c.3-4 Ma and c.10 Ma.	47
31	Low-temperature Portions of Age Spectra of Fault Rock Samples. Horizontal Axes Vary but Emphasise Parallel Behaviour and Clustering at Ages of c.3.5 Ma, 10 Ma and 34 Ma, and 6-70 Ma in General.	48

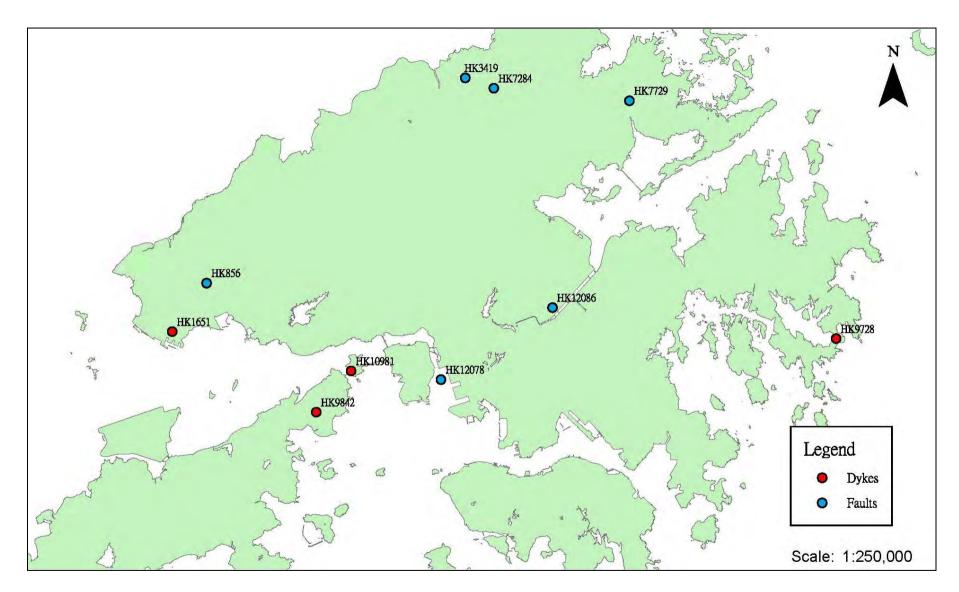


Figure 1 - Locations of Mafic Dyke and Fault Rock Samples Used in Study

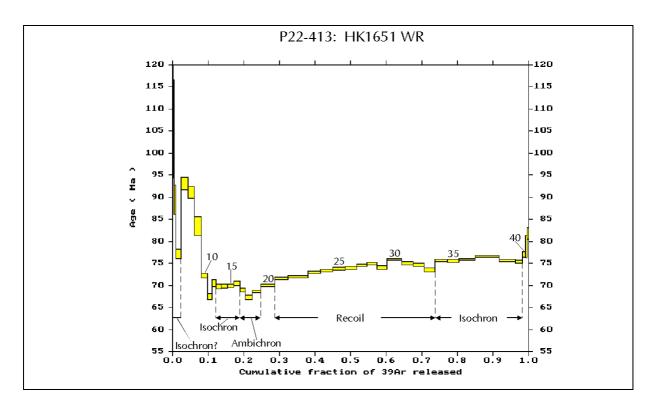


Figure 2 - Argon Age Spectrum of Mafic Dyke HK1651 Whole Rock. Numbers Identify Individual Gas Fractions. On Basis of Correlation Diagrams (Figures 3-5) Portions of Spectrum Are Identified as Isochrons or Ambichrons (Respectively Lines of Negative or Positive Slope), or Resulting from Recoil of ³⁹Ar (Horizontal Lines).

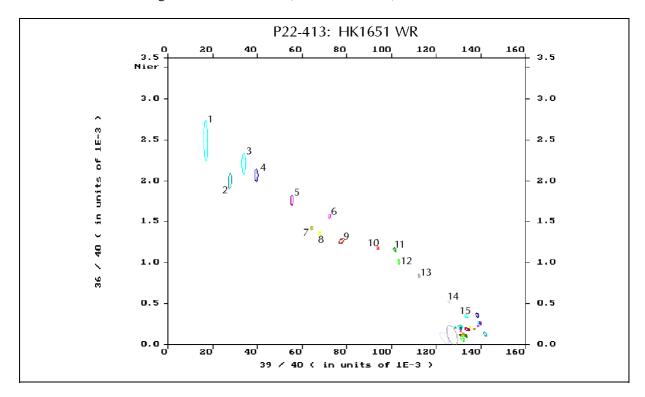


Figure 3 - ³⁶Ar/⁴⁰Ar vs. ³⁹Ar/⁴⁰Ar Correlation Diagram of Mafic Dyke HK1651 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions (See also Figure 4).

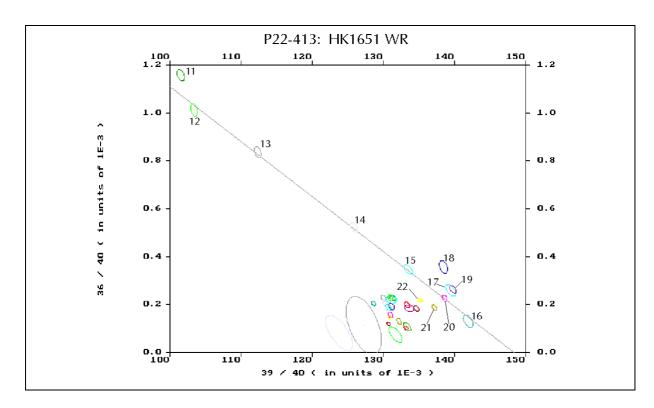


Figure 4 - Detail of Figure 3 for Fractions 11-42 (See also Figure 5). Isochron Fitted to Points 12-16 Yields Age of 70.1 ± 0.4 Ma (See Table 2).

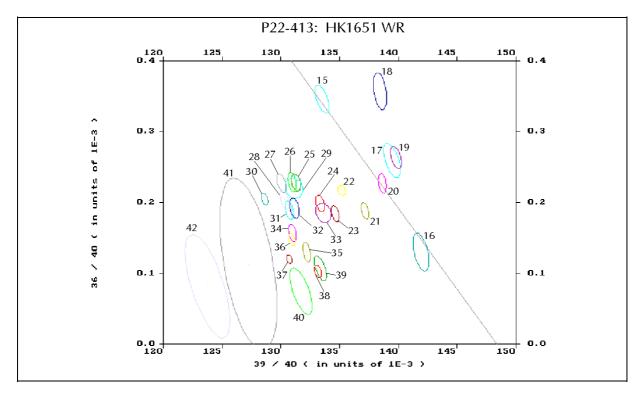


Figure 5 - Detail of Figure 3 for Fractions 15-42 (see also Figure 4)

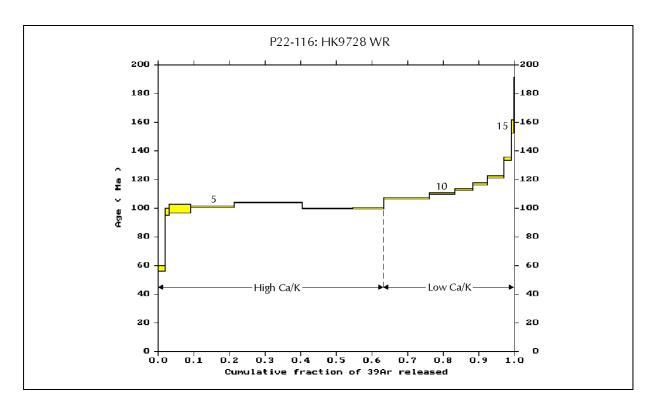


Figure 6 - Argon Age Spectrum of Mafic Dyke HK9728 Whole Rock. Numbers Identify Individual Gas Fractions. Regions of Ar Release from High and Low Ca/K Phases, as Indicated by $^{37}\text{Ar}/^{39}\text{Ar}$ Ratios, Are Labelled.

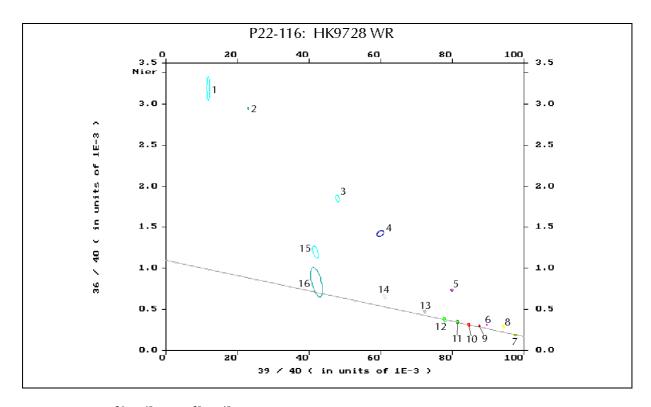


Figure 7 - 36 Ar/ 40 Ar vs. 39 Ar/ 40 Ar Correlation Diagram of Mafic Dyke HK 9728 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions. Note V-shaped Array of Points. Isochron Fitted to Points 10-12 Yields Age of 87 \pm 12 Ma (See Table 2).

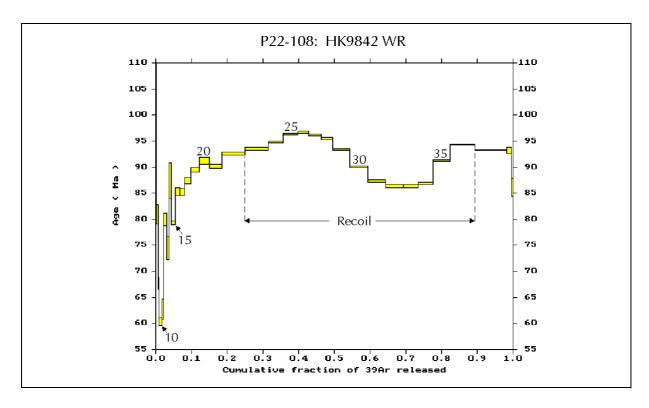


Figure 8 - Argon Age Spectrum of Mafic Dyke HK9842 Whole Rock. Numbers Identify Individual Gas Fractions. Region of Ar Release from Highly Recoil-affected Phases Is Labelled.

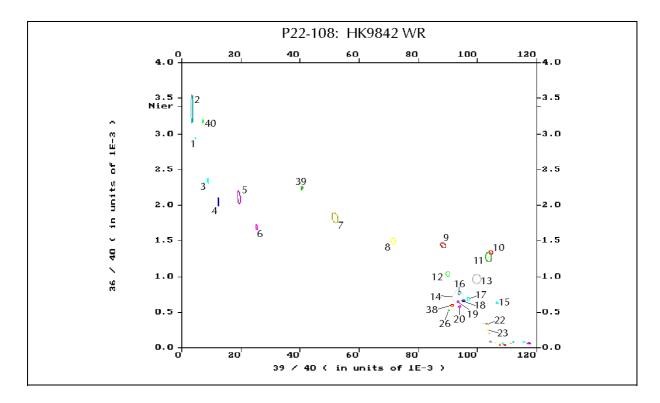


Figure 9 - ³⁶Ar/⁴⁰Ar vs. ³⁹Ar/⁴⁰Ar Correlation Diagram of Mafic Dyke HK9842 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions, except in Region of Ar Release from Highly Recoil-affected Phases, in Lower Right Hand of Figure. Note Late Fractions Revert towards Modern Atmosphere.



Figure 10 - Argon Age Spectrum of Mica from Mafic Dyke HK9842. Number Identifies Fifth Gas Fraction. Dashed Lines Suggest Two-phase Ar-retention (cf. York & Lopez-Martinez, 1986).

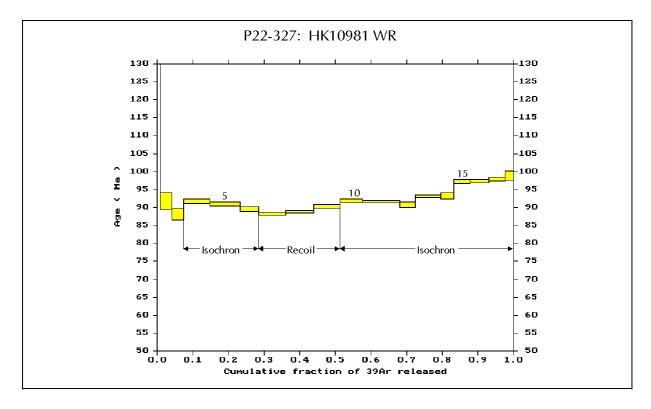


Figure 11 - Argon Age Spectrum of Mafic Dyke HK10981 Whole Rock. Numbers Identify Individual Gas Fractions. Interpretation Based on Correlation Diagrams (Figures 12-13) as for Figure 2.

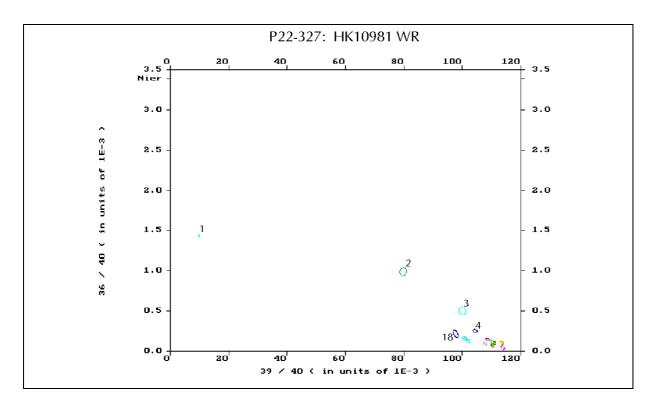


Figure 12 - 36 Ar/ 40 Ar vs. 39 Ar/ 40 Ar Correlation Diagram of Mafic Dyke HK10981 Whole Rock. "Nier" Represents Composition of Modern Atmosphere. Numbers Identify Individual Gas Fractions 3-18 (See also Figure 13).

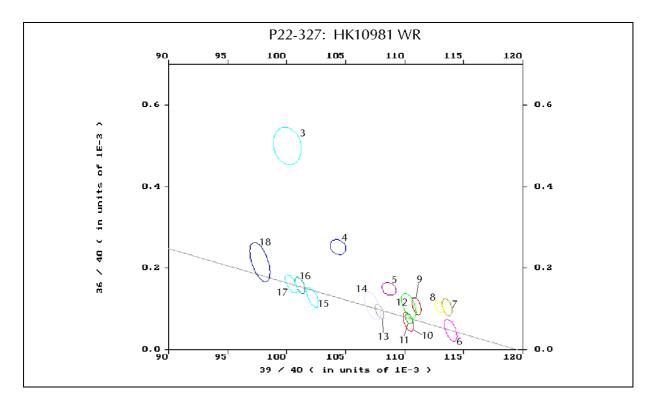


Figure 13 - Detail of Figure 11 for Fractions 3-12. Note V-shaped Array of Points, as on Figure 7. Isochron Fitted to Points 10-18 Yields Age of 86.6 ± 1.8 Ma (See Table 2).

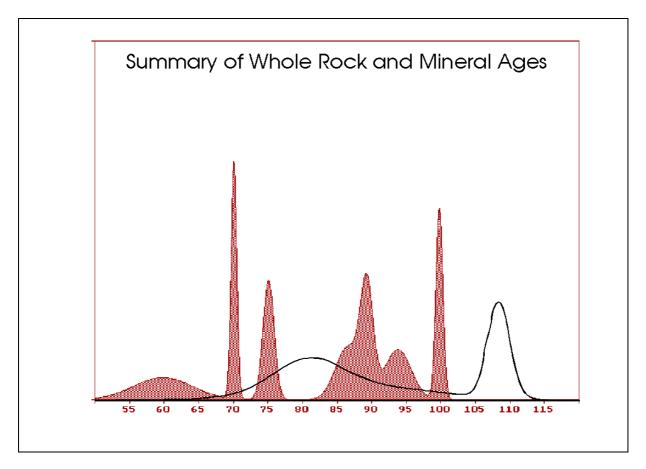


Figure 14 - Summary Histogram of All Mafic Dyke Whole-Rock and Mineral Ages. Each Age Contributes Equal Area Gaussian to Total, Width of Gaussian (and so its Height) Reflects Error of that Age.

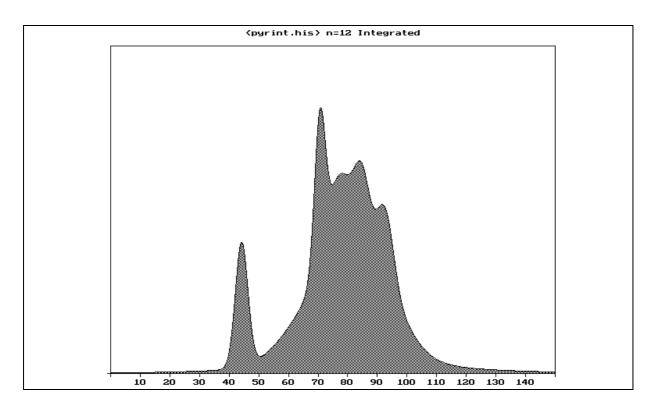


Figure 15 - Summary Histogram of Pyrite Ages for Fault Rocks. Each Age in Table 3 Contributes Equal Area Gaussian to Total, Width of Gaussian (and so its Height) Reflects Error of that Age.

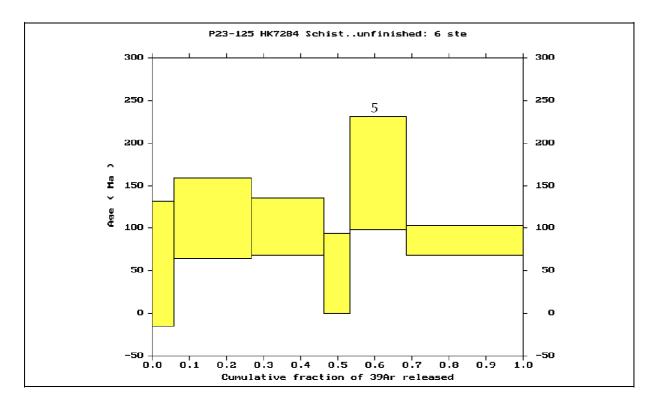


Figure 16 - Argon Age Spectrum of Initial Fractions of Fault Rock HK7284 Whole Rock. Number Identifies Fifth Gas Fraction. Spectrum Shows No Sign of Young, Low-temperature Events

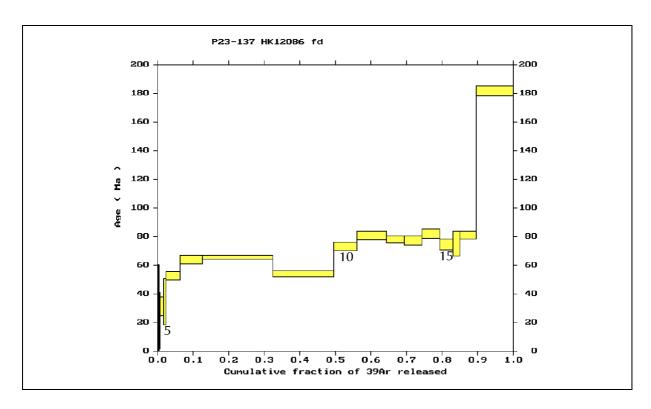


Figure 17 - Argon Age Spectrum of Feldspar in Fault Rock HK12086. Numbers Identify Individual Gas Fractions. (See also Figure 18).

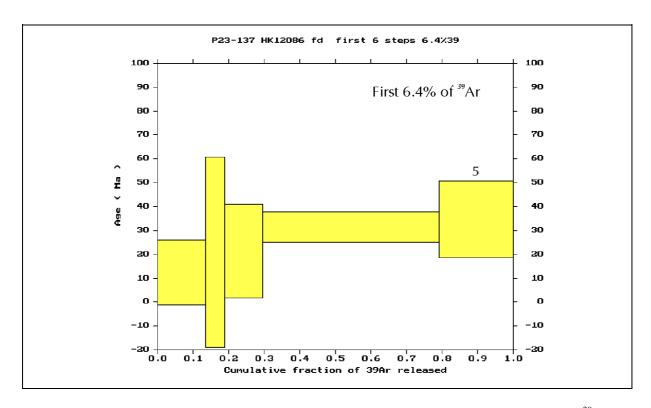


Figure 18 - Detail of Figure 17, Showing Fractions 1-5, Representing First 6.4% of Sample ³⁹Ar.

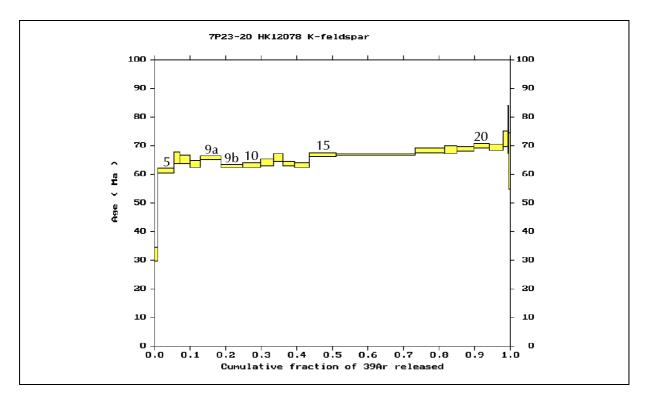


Figure 19 - Argon Age Spectrum of K-Feldspar in Fault Rock HK12078. Numbers Identify Individual Gas Fractions. (See also Figure 20)

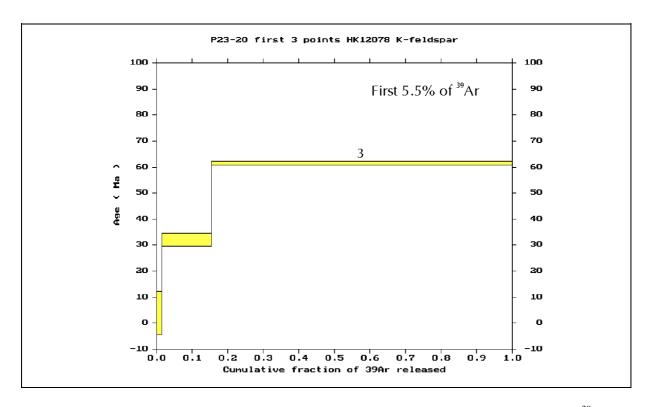


Figure 20 - Detail of Figure 19, Showing Fractions 1-3, Representing First 5.5% of Sample ³⁹Ar.

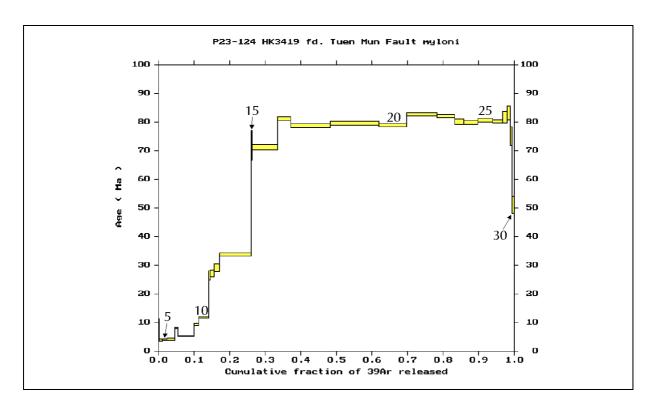


Figure 21 - Argon Age Spectrum of K-Feldspar in Fault Rock HK3419. Numbers Identify Individual Gas Fractions. (See also Figure 22).

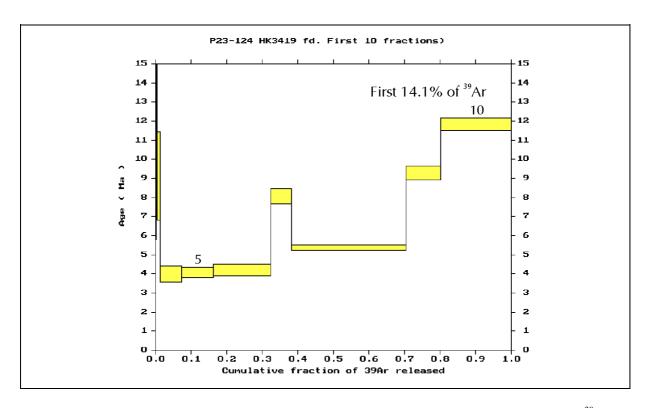


Figure 22 - Detail of Figure 21, Showing Fractions 1-5, Representing First 14.1% of Sample ³⁹Ar.

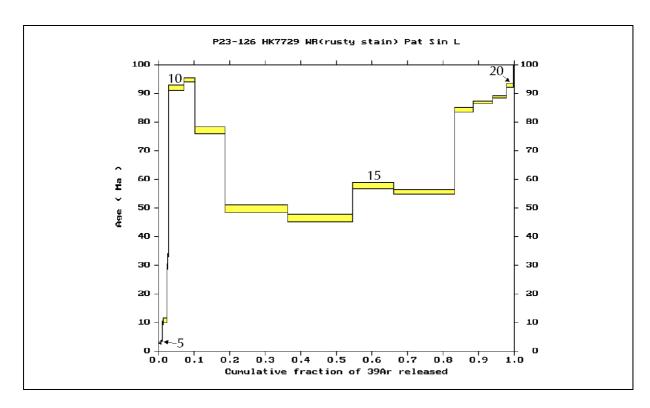


Figure 23 - Argon Age Spectrum of Fault Rock HK7729 Whole Rock. Numbers Identify Individual Gas Fractions. (See also Figure 24).

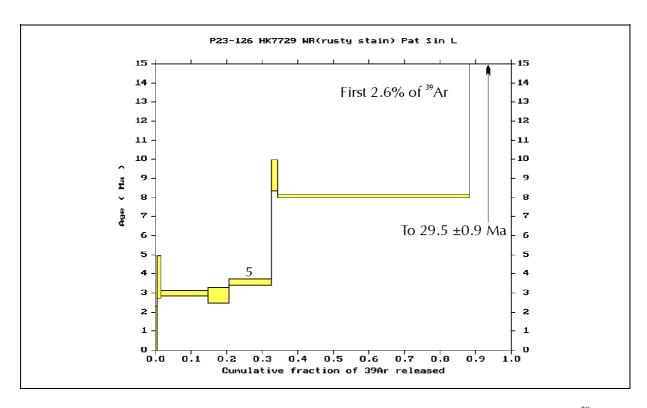


Figure 24 - Detail of Figure 23, Showing Fractions 1-9, Representing First 2.6% of Sample ³⁹Ar. Number Identified Fifth Gas Fraction. Fractions 8 and 9 Are off Vertical Scale

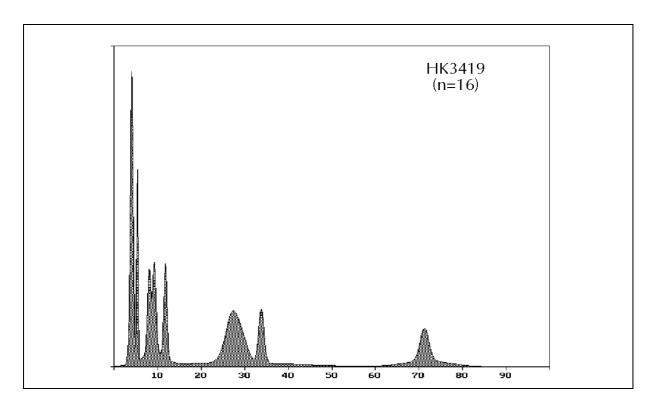


Figure 25 - Summary Histogram of Ages of First 16 Ar Fractions in Feldspar from Fault Rock HK3419. Age Interpretation as for Figure 14.

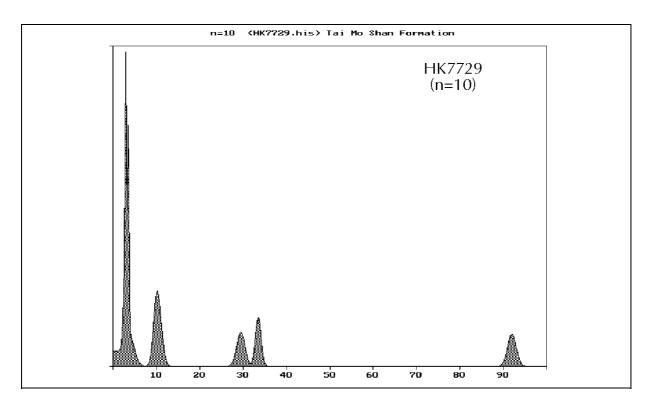


Figure 26 - Summary Histogram of Ages of First 10 Ar Fractions in Feldspar from Fault Rock HK7729. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.

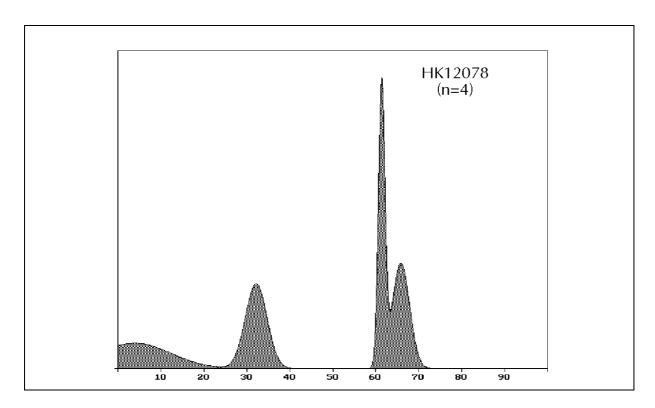


Figure 27 - Summary Histogram of Ages of First 16 Ar Fractions in Feldspar from Fault Rock HK12078. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.

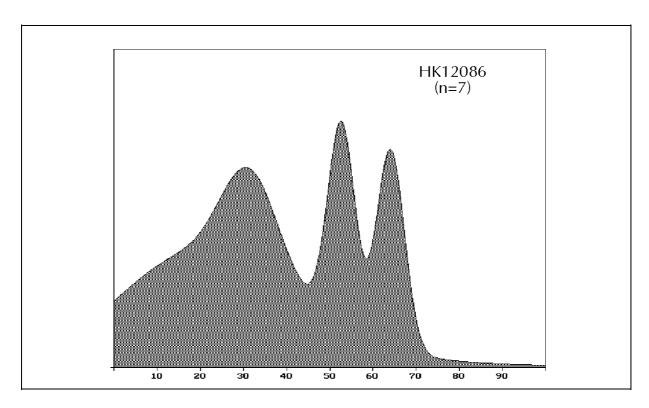


Figure 28 - Summary Histogram of Ages of First 16 Ar Fractions in Feldspar from Fault Rock HK12086. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.

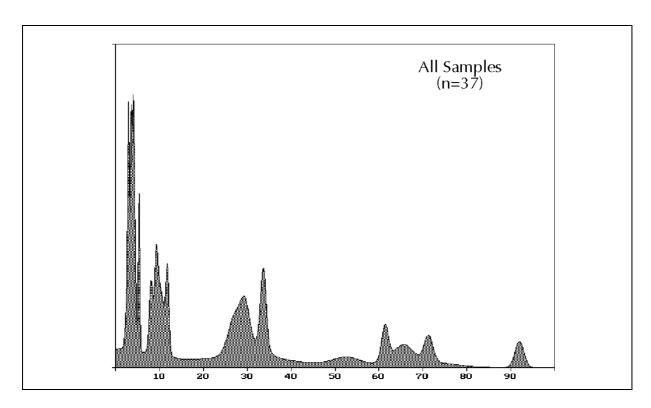


Figure 29 - Summary Histogram of Ages in Figures 25-28. Age Interpretation as for Figure 14. Horizontal Scale as for Figure 25.

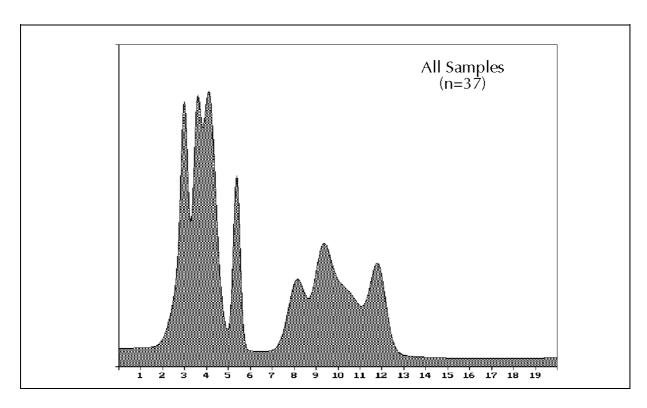


Figure 30 - Detail of Figure 29 Showing 0-20 Ma Region of Horizontal Axis. Age Interpretation as for Figure 14. Note Clusters of Ages at c.3-4 Ma and c.10 Ma.

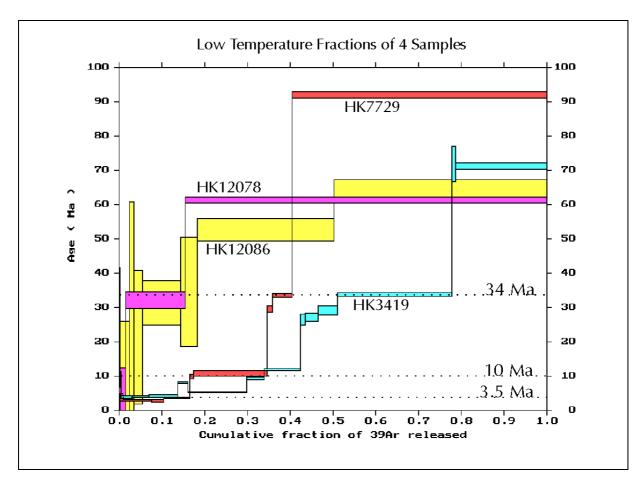


Figure 31 - Low-temperature Portions of Age Spectra of Fault Rock Samples. Horizontal Axes Vary but Emphasise Parallel Behaviour and Clustering at Ages of c.3.5 Ma, 10 Ma and 34 Ma, and 6-70 Ma in General.

$\label{eq:appendix} \mbox{APPENDIX A}$ RAW DATA FOR ANALYSES OF DYKE SAMPLES

P22-107 HK9842 mica

NewAge 981201 AgeParams 990623 (Fractionation relative to 40Ar/36Ar = 286.97)

Fractions:

Name	Temp	Cum 39K		Age		40Ar* / 39K	
107-1 0.20W 10s	1	0.09426 9	$7.210 \pm$	6.039	Ma	$9.417 \pm$	0.60
107-2 0.20W 30s	2	0.19253 11	.0.055 ±	5.340	Ma 1	$0.700 \pm$	0.54
107-3 0.30W 20-	3	0.45690 10	$7.924 \pm$	1.975	Ma 1	0.486 ±	0.20
107-4 0.40W 20-	4	0.72309 10	$17.964 \pm$	2.302	Ma 1	0.491 ±	0.23
107-5 0.50w 20-	5	0.81206 8	86.226 ±	5.124	Ma	$8.328 \pm$	0.51
107-6 0.70w 20-	6	0.90701 11	$4.353 \pm$	6.721	Ma 1	1.131 ±	0.68
107-7 0.90W 20-	7	0.93840 12	$24.070 \pm$	20.875	Ma 1	2.110 ±	2.11
107-8 1.20W 20-	8	1.00000 10	5.330 ±	10.151	Ma 1	0.227 ±	1.01
Name	Cum 36S	40Ar	/ 36Ar		40ArAcc/q	37Ca	/ 39K
				33.08	_		18.226 m
							17.757 m
107-3 0.30W 20-	0.86021	132291.4			1.2E-0013		5.930 m
107-4 0.40W 20-	0.85415	-115940.2	9 ± 9915	36.50	-1.4E-0013	170.826 ±	7.317 m
107-5 0.50w 20-	1.00035	1573.1	.5 ± 4	12.75	3.3E-0012	404.206 ±	27.651 m
107-6 0.70w 20-	1.00349	85144.6	0 ±14778	04.80	7.0E-0014	262.666 ±	28.745 m
107-7 0.90W 20-	0.96673	-2312.2	28 ± 35	44.93	-8.2E-0013	$152.538 \pm$	58.783 m
107-8 1.20W 20-	1.00000	5069.4	6 ± 81	12.35	7.4E-0013	156.952 ±	31.182 m
Name	40Ar*	Vol contr)/a		Atm Cont	F1	F2
				· %)			5.3E-0003
						-1.1E-0004	3.5E-0002
107-3 0.30W 20-	52.95 ±		•	,	0.2234%	-7.8E-0005	2.8E-0001
107-4 0.40W 20-	53.34 ±	1.19 E-12	2.2	· ·*)	-0.2549%	-1.2E-0004	-1.1E+0000
107-5 0.50w 20-	14.15 ±	0.86 E-12	•	,	18.7840%	-2.9E-0004	1.7E-0002
107-6 0.70w 20-	$20.19 \pm$	1.23 E-12	6.1	.%)	0.3471%	-1.9E-0004	3.6E-0001
107-7 0.90W 20-	$7.26 \pm$	1.26 E-12	2 (17.4	:%)	-12.7796%	-1.1E-0004	-9.4E-0003
107-8 1.20W 20-	$12.03 \pm$	1.19 E-12	9.9) ()	5.8290%	-1.1E-0004	2.0E-0002
	107-1 0.20W 10s 107-2 0.20W 30s 107-3 0.30W 20- 107-4 0.40W 20- 107-5 0.50W 20- 107-6 0.70W 20- 107-7 0.90W 20- 107-8 1.20W 20- Name 107-1 0.20W 10s 107-2 0.20W 30s 107-3 0.30W 20- 107-4 0.40W 20- 107-5 0.50W 20- 107-6 0.70W 20- 107-7 0.90W 20- 107-8 1.20W 20- Name 107-1 0.20W 10s 107-2 0.20W 30s 107-3 0.30W 20- 107-6 0.70W 20- 107-7 0.90W 20- 107-8 1.20W 20- 107-1 0.20W 30s 107-2 0.20W 30s 107-3 0.30W 20- 107-4 0.40W 20- 107-5 0.50W 20- 107-6 0.70W 20- 107-6 0.70W 20- 107-6 0.70W 20- 107-7 0.90W 20-	107-1 0.20W 10s 1 107-2 0.20W 30s 2 107-3 0.30W 20- 3 107-4 0.40W 20- 4 107-5 0.50W 20- 5 107-6 0.70W 20- 6 107-7 0.90W 20- 7 107-8 1.20W 20- 8 Name Cum 36S 107-1 0.20W 10s 0.82428 107-2 0.20W 30s 0.85491 107-3 0.30W 20- 0.86021 107-4 0.40W 20- 0.85415 107-5 0.50W 20- 1.00035 107-6 0.70W 20- 1.00349 107-7 0.90W 20- 0.96673 107-8 1.20W 20- 1.00349 107-7 0.90W 20- 1.00000 Name 40Ar* 107-1 0.20W 10s 16.95 ± 107-2 0.20W 30s 20.09 ± 107-3 0.30W 20- 52.95 ± 107-4 0.40W 20- 53.34 ± 107-5 0.50W 20- 14.15 ± 107-6 0.70W 20- 20.19 ± 107-7 0.90W 20- 20.19 ± 107-7 0.90W 20- 7.26 ±	107-1 0.20W 10s 1 0.09426 9 107-2 0.20W 30s 2 0.19253 11 107-3 0.30W 20- 3 0.45690 10 107-4 0.40W 20- 4 0.72309 10 107-5 0.50W 20- 5 0.81206 8 107-6 0.70W 20- 6 0.90701 11 107-7 0.90W 20- 7 0.93840 12 107-8 1.20W 20- 8 1.00000 10 Name Cum 36S 40Ar 107-1 0.20W 10s 0.82428 566.9 107-2 0.20W 30s 0.85491 8950.4 107-3 0.30W 20- 0.86021 132291.4 107-4 0.40W 20- 0.85415 -115940.2 107-5 0.50W 20- 1.00035 1573.1 107-6 0.70W 20- 1.00349 85144.6 107-7 0.90W 20- 0.96673 -2312.2 107-8 1.20W 20- 1.00349 85144.6 107-7 0.90W 20- 1.00000 5069.4 Name 40Ar* Vol contra 107-2 0.20W 30s 20.09 ± 1.01 E-12 107-3 0.30W 20- 52.95 ± 1.03 E-12 107-4 0.40W 20- 53.34 ± 1.19 E-12 107-5 0.50W 20- 14.15 ± 0.86 E-12 107-6 0.70W 20- 20.19 ± 1.23 E-12 107-6 0.70W 20- 20.19 ± 1.23 E-12 107-7 0.90W 20- 7.26 ± 1.26 E-12	107-1 0.20W 10s	107-1 0.20W 10s	107-1 0.20W 10s	107-1 0.20W 10s

Integrated Results:

Age = $106.179 \pm 1.699 \text{ Ma}$

40Ar* / 39K = 10.312 ± 0.165

Total 39K Vol = 1.9101E-0011 ccNTP/g

Total 40Ar* Vol = 1.970 ± 0.031 E-10

(40Ar / 36Ar)sam = 2895.20 ± 403.17

Total Atm 40Ar Vol = 2.2389E-0011 ccNTP/g

(36Ar / 40Ar)sam = 0.00034540 ±0.00006464
(37Ar / 40Ar)sam = 0.02038543 ±0.00057566
(39Ar / 40Ar)sam = 0.08707773 ±0.00124470

37Ca / 39K = 2.341 ± 0.057 E-1

Mass = 1.000 g

F1 = -1.670 E-4 F2 = 1.606 E-2

NewAge 981201 AgeParams 990623 (Fractionation relative to 40Ar/36Ar = 286.97)

No	Name	Ten	מו	Cum 39K			Age		40Ar*	/	39K
1	108-01 0.20w		2		278.545	±	8.056	Ма	28.429		0.89
2	108-02 0.21w	2	3	0.00039			175.721		2.735		16.85
3	108-03 0.24w	25	3		336.768		10.874		34.947		1.24
4	108-04 0.28w		4		310.203		12.146		31.947		1.36
5	108-05 0.35w		5		195.316		12.203		19.470		1.28
6	108-06 0.40w		6		197.993		4.086		19.752		0.43
7	108-07 0.45w	25	7	0.00288	92.057	±	3.865	Ма	8.915	±	0.38
8	108-08 0.52W	25	8	0.00579	80.834	±	1.886	Ma	7.803	±	0.19
9	108-09 0.60W	25	9	0.00883	67.633	±	1.165		6.505	±	0.11
10	108-10 0.68w	26 1	.0	0.01762	60.246	±	0.730	Ma	5.782	±	0.07
11	108-11 0.72w	26 1	.1	0.02249	62.622	±	1.954	Ma	6.014	±	0.19
12	108-12 0.76w	26 1	2	0.03018	79.876	±	1.242	Ma	7.709	±	0.12
13	108-13 0.80W	26 1	.3	0.03602	74.408	±	2.204	Ma	7.170	±	0.22
14	108-14 0.86W	26 1	4	0.04416	87.346	±	3.376	Ma	8.447	±	0.33
15	108-15 0.94W	26 1	.5	0.05521	79.199	±	0.340	Ma	7.642	±	0.03
16	108-16 1.00w	27 1	.6	0.06714	85.227	±	0.723	Ma	8.237	±	0.07
17	108-17 1.10w	27 1	7	0.07954	85.171	±	0.732	Ma	8.232	±	0.07
18	108-18 1.20w	27 1	.8	0.09724	87.294	±	0.611	Ma	8.442	±	0.06
19	108-19 1.30w	27 1	.9	0.12189	89.423	±	0.457	Ma	8.653	±	0.05
20	108-20 1.40w	27 2	0	0.15041	91.105	±	0.617	Ma	8.820	±	0.06
21	108-21 1.50W	27 2	:1	0.18538	90.100	±	0.335	Ma	8.720	±	0.03
22	108-22 1.60w	28 2	2	0.24945	92.555	±	0.302	Ma	8.964	±	0.03
23	108-23 1.65w	28 2	3	0.31564	93.400	±	0.301	Ma	9.048	±	0.03
24	108-24 1.70w	28 2	4	0.35615	94.771		0.168	Ma	9.184	±	0.02
25	108-25 1.75w	28 2	15	0.39865	96.205	±	0.179	Ma	9.327	±	0.02
26	108-26 1.80W	28 2	6	0.42823	96.580		0.219		9.364		0.02
27	108-27 1.86W	28 2	17	0.46362	96.109	±	0.141		9.317	±	0.01
28	108-28 2.0W 2	8- 2	8	0.49499	95.390	±	0.217	Ma	9.246	±	0.02
29	108-29 2.20W		19	0.54288	93.284		0.168		9.036		0.02
30	108-30 2.40W		0	0.59253	89.942		0.133		8.705		0.01
31	108-31 2.60W		1	0.64423	87.206		0.243		8.433		0.02
32	108-32 2.80W		2	0.69321	86.290		0.256		8.343		0.03
33	108-33 3.00W		3	0.73571	86.297	±	0.248		8.343		0.02
34	108-34 3.30W		4	0.77522		±	0.243		8.391		0.02
35	108-35 4.00W		5	0.82450	91.145		0.115		8.824		0.01
36	108-36 6.00W		6	0.89393	94.238		0.116	Ma	9.131		0.01
37	108-37 fuse 2		7	0.98262	93.158		0.107		9.024		0.01
38	108-38 refuse	•	8	0.99464	93.127		0.622		9.021		0.06
39	108-39 re2fus		9	0.99908		±	1.670		8.321		0.17
40	108-40 re3fus	e 4	:0	1.00000	88.926	±	10.642	Ma	8.604	±	1.06

No	Name	Cum 36S	40Ar /	361	Ar	40ArAcc/g	37Ca	/ 39K
1	108-01 0.20w 30	0.06827	339.96	±	1.54	2.4E-0010	564.545 ±	36.518 m
2	108-02 0.21w 2	0.07437	298.30	±	17.43	2.2E-0011	356.145 ±	589.044 m
3	108-03 0.24w 25	0.09627	426.97	±	6.53	7.7E-0011	418.616 ±	54.130 m
4	108-04 0.28w 25	0.11171	487.75	±	13.14	5.4E-0011	$380.228 \pm$	41.309 m
5	108-05 0.35w 25	0.11993	473.45	±	18.63	2.9E-0011	$456.284 \pm$	61.841 m
6	108-06 0.40w 25	0.13523	590.37	±	12.56	5.4E-0011	344.989 ±	20.482 m
7	108-07 0.45w 25	0.14408	549.16	±	19.91	3.1E-0011	$342.427 \pm$	16.438 m
8	108-08 0.52W 25	0.16190	668.60	±	18.25	6.3E-0011	$447.135 \pm$	9.796 m
9	108-09 0.60W 25	0.17637	695.05	±	15.35	5.1E-0011	668.747 ±	12.541 m
10	108-10 0.68w 26	0.20933	747.06	±	11.42	1.2E-0010	$1.129 \pm$	0.011
11	108-11 0.72w 26	0.22684	785.70	±	39.66	6.2E-0011	$1.549 \pm$	0.021
12	108-12 0.76w 26	0.25280	964.36	±	29.84	9.2E-0011	$1.588 \pm$	0.014
13	108-13 0.80W 26	0.26934	1036.75	±	68.18	5.8E-0011	$1.519 \pm$	0.024
14	108-14 0.86W 26	0.28760	1397.89	±	172.04	6.4E-0011	$1.562 \pm$	0.027
15	108-15 0.94W 26	0.30675	1587.14	±	26.44	6.8E-0011	$1.729 \pm$	0.005
16	108-16 1.00w 27	0.33535	1301.59	±	30.05	1.0E-0010	$1.799 \pm$	0.015
17	108-17 1.10w 27	0.36094	1463.89	±	44.60	9.0E-0011	$2.158 \pm$	0.010
18	108-18 1.20w 27	0.39684	1513.92	±	26.57	1.3E-0010	$2.360 \pm$	0.015
19	108-19 1.30w 27	0.44694	1542.25	±	23.25	1.8E-0010	$2.418 \pm$	0.007
20	108-20 1.40w 27	0.49857	1722.21	±	26.95	1.8E-0010	$2.422 \pm$	0.012
21	108-21 1.50W 27	0.53263	2916.30	±	52.35	1.2E-0010	$2.183 \pm$	0.006
22	108-22 1.60w 28	0.57793	4008.38	±	85.37	1.6E-0010	$1.142 \pm$	0.004
23	108-23 1.65w 28	0.58492	25367.69	±	1563.08	2.5E-0011	$546.238 \pm$	2.208 m
24	108-24 1.70w 28	0.58954	23888.67	±	2065.72	1.6E-0011	$195.554 \pm$	3.630 m
25	108-25 1.75w 28	0.60012	11273.17	±	355.29	3.7E-0011	$147.444 \pm$	0.820 m
26	108-26 1.80W 28	0.65024	1913.47	±	15.24	1.8E-0010	$158.339 \pm$	1.047 m
27	108-27 1.86W 28	0.65841	12108.14	±	460.37	2.9E-0011	$178.943 \pm$	0.915 m
28	108-28 2.0W 28-	0.66411	15197.49	±	1062.28	2.0E-0011	$211.317 \pm$	1.381 m
29	108-29 2.20W 28	0.67280	14886.99	±	597.88	3.1E-0011	$260.777 \pm$	0.947 m
30	108-30 2.40W 28	0.68373	11866.43	±	386.80	3.9E-0011	$298.889 \pm$	1.132 m
31	108-31 2.60W 28	0.69444	12219.35	±	512.34	3.8E-0011	$354.951 \pm$	1.399 m
32	108-32 2.80W 28	0.70290	14443.06	±	732.79	3.0E-0011	$406.111 \pm$	1.242 m
33	108-33 3.00W 28	0.70936	16366.94	±	999.73	2.3E-0011	$470.115 \pm$	2.423 m
34	108-34 3.30W 28	0.71537	16433.48	±	980.76	2.1E-0011	$513.526 \pm$	1.999 m
35	108-35 4.00W 28	0.72362	15735.59	±	765.46	2.9E-0011	$705.760 \pm$	0.853 m
36	108-36 6.00W 28	0.73480	16902.11	±	573.73	3.9E-0011	$570.241 \pm$	1.166 m
37	108-37 fuse 28-	0.78634	4842.48	±	44.10	1.8E-0010	$584.546 \pm$	1.241 m
38	108-38 refuse (0.80925	1681.46	±	29.49	8.1E-0011	$645.133 \pm$	3.961 m
39	108-39 re2fuse	0.88099	446.39	±	3.73	2.5E-0010	$650.355 \pm$	9.665 m
40	108-40 re3fuse	1.00000	314.88	±	2.41	4.2E-0010	$649.968 \pm$	46.704 m

1 108-01 0.20w 30 36.25 ± 1.11 E-12 (3.1%) 86.9214% -4.0E-0004 -1.6E-0004 2 108-02 0.21w 2 0.20 ± 1.26 E-12 (616.0%) 99.0606% -2.5E-0004 -1.5E-0004 3 108-03 0.24w 25 34.38 ± 1.20 E-12 (3.5%) 69.2092% -3.0E-0004 1.4E-0004 4 108-04 0.28w 25 35.45 ± 1.48 E-12 (4.2%) 60.5844% -2.7E-0004 3.7E-0004 5 108-05 0.35w 25 17.46 ± 1.15 E-12 (6.6%) 62.4148% -3.3E-0004 8.4E-0004 6 108-06 0.40w 25 53.89 ± 1.19 E-12 (2.2%) 50.0536% -2.5E-0004 1.2E-0003 7 108-07 0.45w 25 26.82 ± 1.16 E-12 (4.3%) 53.8093% -2.4E-0004 2.5E-0003 8 108-08 0.52w 25 79.40 ± 1.87 E-12 (2.4%) 44.1968% -3.2E-0004 5.6E-0003 9 108-09 0.60W 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 28.5026% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 22.7030% -1.3E-0003 7.7E-0002 18 108-18 1.20w 27 357.00 ± 3.50 E-12 (1.0%) 22.7030% -1.5E-0003 7.7E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002	No	Name	40Ar*	Vol ccNTP/g		Atm Cont	F1	F2
3 108-03 0.24w 25 34.38 ± 1.20 E-12 (3.5%) 69.2092% -3.0E-0004 1.4E-0004 4 108-04 0.28w 25 35.45 ± 1.48 E-12 (4.2%) 60.5844% -2.7E-0004 3.7E-0004 5 108-05 0.35w 25 17.46 ± 1.15 E-12 (6.6%) 62.4148% -3.3E-0004 8.4E-0004 6 108-06 0.40w 25 53.89 ± 1.19 E-12 (2.2%) 50.0536% -2.5E-0004 1.2E-0003 7 108-07 0.45w 25 26.82 ± 1.16 E-12 (4.3%) 53.8093% -2.4E-0004 2.5E-0003 8 108-08 0.52w 25 79.40 ± 1.87 E-12 (2.4%) 44.1968% -3.2E-0004 5.6E-0003 9 108-09 0.60w 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 12 108-12 0.76w	1	108-01 0.20w 30	$36.25 \pm$	1.11 E-12 (3.1%)	86.9214%	-4.0E-0004	-1.6E-0004
4 108-04 0.28w 25 35.45 ± 1.48 E-12 (4.2%) 60.5844% -2.7E-0004 3.7E-0004 5 108-05 0.35w 25 17.46 ± 1.15 E-12 (6.6%) 62.4148% -3.3E-0004 8.4E-0004 6 108-06 0.40w 25 53.89 ± 1.19 E-12 (2.2%) 50.0536% -2.5E-0004 1.2E-0003 7 108-07 0.45w 25 26.82 ± 1.16 E-12 (4.3%) 53.8093% -2.4E-0004 2.5E-0003 8 108-08 0.52W 25 79.40 ± 1.87 E-12 (2.4%) 44.1968% -3.2E-0004 5.6E-0003 9 108-09 0.60W 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w <t< td=""><td>2</td><td>108-02 0.21w 2</td><td>$0.20 \pm$</td><td>1.26 E-12 (</td><td>616.0%)</td><td>99.0606%</td><td>-2.5E-0004</td><td>-1.5E-0004</td></t<>	2	108-02 0.21w 2	$0.20 \pm$	1.26 E-12 (616.0%)	99.0606%	-2.5E-0004	-1.5E-0004
5 108-05 0.35w 25 17.46 ± 1.15 E-12 (6.6%) 62.4148% -3.3E-0004 8.4E-0004 6 108-06 0.40w 25 53.89 ± 1.19 E-12 (2.2%) 50.0536% -2.5E-0004 1.2E-0003 7 108-07 0.45w 25 26.82 ± 1.16 E-12 (4.3%) 53.8093% -2.4E-0004 2.5E-0003 8 108-08 0.52W 25 79.40 ± 1.87 E-12 (2.4%) 44.1968% -3.2E-0004 5.6E-0003 9 108-09 0.60W 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 22.7030% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	3	108-03 0.24w 25	$34.38 \pm$	1.20 E-12 (3.5%)	69.2092%	-3.0E-0004	1.4E-0004
6 108-06 0.40w 25 53.89 ± 1.19 E-12 (2.2%) 50.0536% -2.5E-0004 1.2E-0003 7 108-07 0.45w 25 26.82 ± 1.16 E-12 (4.3%) 53.8093% -2.4E-0004 2.5E-0003 8 108-08 0.52W 25 79.40 ± 1.87 E-12 (2.4%) 44.1968% -3.2E-0004 5.6E-0003 9 108-09 0.60W 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	4	108-04 0.28w 25	$35.45 \pm$	1.48 E-12 (4.2%)	60.5844%	-2.7E-0004	3.7E-0004
7 108-07 0.45w 25 26.82 ± 1.16 E-12 (4.3%) 53.8093% -2.4E-0004 2.5E-0003 8 108-08 0.52W 25 79.40 ± 1.87 E-12 (2.4%) 44.1968% -3.2E-0004 5.6E-0003 9 108-09 0.60W 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	5	108-05 0.35w 25	$17.46 \pm$	1.15 E-12 (6.6%)	62.4148%	-3.3E-0004	8.4E-0004
8 108-08 0.52W 25 79.40 ± 1.87 E-12 (2.4%) 44.1968% -3.2E-0004 5.6E-0003 9 108-09 0.60W 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	6	108-06 0.40w 25	$53.89 \pm$	1.19 E-12 (2.2%)	50.0536%	-2.5E-0004	1.2E-0003
9 108-09 0.60W 25 69.08 ± 1.24 E-12 (1.8%) 42.5149% -4.8E-0004 1.1E-0002 10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%) 39.5552% -8.0E-0004 2.3E-0002 11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	7	108-07 0.45w 25	$26.82 \pm$	1.16 E-12 (4.3%)	53.8093%	-2.4E-0004	2.5E-0003
10 108-10 0.68w 26 177.76 ± 2.26 E-12 (1.3%)	8	108-08 0.52W 25	$79.40 \pm$	1.87 E-12 (2.4%)	44.1968%	-3.2E-0004	5.6E-0003
11 108-11 0.72w 26 102.52 ± 3.25 E-12 (3.2%) 37.6099% -1.1E-0003 3.3E-0002 12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	9	108-09 0.60W 25	$69.08 \pm$	1.24 E-12 (1.8%)	42.5149%	-4.8E-0004	1.1E-0002
12 108-12 0.76w 26 207.38 ± 3.37 E-12 (1.6%) 30.6422% -1.1E-0003 3.6E-0002 13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	10			2.26 E-12 (1.3%)	39.5552%	-8.0E-0004	2.3E-0002
13 108-13 0.80W 26 146.38 ± 4.24 E-12 (2.9%) 28.5026% -1.1E-0003 4.1E-0002 14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	11	108-11 0.72w 26	$102.52 \pm$	3.25 E-12 (3.2%)	37.6099%	-1.1E-0003	3.3E-0002
14 108-14 0.86W 26 240.51 ± 9.29 E-12 (3.9%) 21.1390% -1.1E-0003 5.3E-0002 15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	12	108-12 0.76w 26	$207.38 \pm$	3.37 E-12 (1.6%)	30.6422%	-1.1E-0003	3.6E-0002
15 108-15 0.94W 26 295.37 ± 1.94 E-12 (0.7%) 18.6184% -1.2E-0003 7.4E-0002 16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	13	108-13 0.80W 26	$146.38 \pm$	4.24 E-12 (2.9%)	28.5026%	-1.1E-0003	4.1E-0002
16 108-16 1.00w 27 343.72 ± 3.31 E-12 (1.0%) 22.7030% -1.3E-0003 5.7E-0002 17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	14	108-14 0.86W 26	$240.51 \pm$	9.29 E-12 (3.9%)	21.1390%	-1.1E-0003	5.3E-0002
17 108-17 1.10w 27 357.00 ± 3.50 E-12 (1.0%) 20.1860% -1.5E-0003 7.7E-0002 18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	15	108-15 0.94W 26	$295.37 \pm$	1.94 E-12 (0.7%)	18.6184%	-1.2E-0003	7.4E-0002
18 108-18 1.20w 27 522.43 ± 4.25 E-12 (0.8%) 19.5189% -1.7E-0003 8.5E-0002 19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	16	108-16 1.00w 27	$343.72 \pm$	3.31 E-12 (1.0%)	22.7030%	-1.3E-0003	5.7E-0002
19 108-19 1.30w 27 746.09 ± 5.26 E-12 (0.7%) 19.1603% -1.7E-0003 8.7E-0002	17	108-17 1.10w 27	$357.00 \pm$	3.50 E-12 (1.0%)	20.1860%	-1.5E-0003	7.7E-0002
· · · · · · · · · · · · · · · · · · ·	18	108-18 1.20w 27	$522.43 \pm$	4.25 E-12 (0.8%)	19.5189%	-1.7E-0003	8.5E-0002
	19	108-19 1.30w 27	$746.09 \pm$	5.26 E-12 (0.7%)	19.1603%	-1.7E-0003	8.7E-0002
20 108-20 1.40w 27 879.75 ± 6.91 E-12 (0.8%) 17.1582% -1.7E-0003 9.7E-0002	20	108-20 1.40w 27		6.91 E-12 (0.8%)	17.1582%	-1.7E-0003	9.7E-0002
21 108-21 1.50W 27 1.07 ± 0.01 E-9 (0.6%) 10.1327% -1.6E-0003 1.5E-0001	21	108-21 1.50W 27	$1.07 \pm$	0.01 E-9 (0.6%)	10.1327%	-1.6E-0003	1.5E-0001
22 108-22 1.60w 28 2.01 ± 0.01 E-9 (0.6%) 7.3721% -8.1E-0004 1.2E-0001	22	108-22 1.60w 28	$2.01 \pm$	0.01 E-9 (0.6%)	7.3721%	-8.1E-0004	1.2E-0001
23 108-23 1.65w 28 2.09 ± 0.01 E-9 (0.6%) 1.1649% -3.9E-0004 3.0E-0001	23	108-23 1.65w 28	$2.09 \pm$	0.01 E-9 (0.6%)	1.1649%	-3.9E-0004	3.0E-0001
24 108-24 1.70w 28 1.30 ± 0.01 E-9 (0.5%) 1.2370% -1.4E-0004 1.2E-0001	24	108-24 1.70w 28	$1.30 \pm$	0.01 E-9 (0.5%)	1.2370%	-1.4E-0004	1.2E-0001
25 108-25 1.75w 28 1.39 ± 0.01 E-9 (0.5%) 2.6213% -1.1E-0004 4.6E-0002	25	108-25 1.75w 28	$1.39 \pm$	0.01 E-9 (0.5%)	2.6213%	-1.1E-0004	4.6E-0002
26 108-26 1.80W 28 968.56 ± 5.16 E-12 (0.5%) 15.4431% -1.1E-0004 7.5E-0003	26	108-26 1.80W 28	$968.56 \pm$		0.5%)	15.4431%	-1.1E-0004	7.5E-0003
27 108-27 1.86W 28 1.15 ± 0.01 E-9 (0.5%) 2.4405% -1.3E-0004 5.9E-0002	27	108-27 1.86W 28	$1.15 \pm$	0.01 E-9 (0.5%)	2.4405%	-1.3E-0004	5.9E-0002
28 108-28 2.0W 28- 1.01 ± 0.01 E-9 (0.5%) 1.9444% -1.5E-0004 8.7E-0002	28	108-28 2.0W 28-	$1.01 \pm$	0.01 E-9 (0.5%)	1.9444%	-1.5E-0004	8.7E-0002
29 108-29 2.20W 28 1.51 ± 0.01 E-9 (0.5%) 1.9850% -1.9E-0004 1.1E-0001	29	108-29 2.20W 28	$1.51 \pm$	0.01 E-9 (0.5%)	1.9850%	-1.9E-0004	1.1E-0001
30 108-30 2.40W 28 1.51 ± 0.01 E-9 (0.5%) 2.4902% -2.1E-0004 1.0E-0001	30	108-30 2.40W 28	$1.51 \pm$		0.5%)	2.4902%	-2.1E-0004	1.0E-0001
31 108-31 2.60W 28 1.52 ± 0.01 E-9 (0.5%) 2.4183% -2.5E-0004 1.2E-0001	31	108-31 2.60W 28	$1.52 \pm$	0.01 E-9 (0.5%)	2.4183%	-2.5E-0004	1.2E-0001
32 108-32 2.80W 28 1.43 ± 0.01 E-9 (0.5%) 2.0460% -2.9E-0004 1.6E-0001	32	108-32 2.80W 28	$1.43 \pm$	0.01 E-9 (0.5%)	2.0460%	-2.9E-0004	1.6E-0001
33 108-33 3.00W 28 1.24 ± 0.01 E-9 (0.5%) 1.8055% -3.4E-0004 2.0E-0001	33	108-33 3.00W 28	$1.24 \pm$	0.01 E-9 (0.5%)	1.8055%	-3.4E-0004	2.0E-0001
34 108-34 3.30W 28 1.16 ± 0.01 E-9 (0.5%) 1.7982% -3.7E-0004 2.2E-0001	34	108-34 3.30W 28	$1.16 \pm$	0.01 E-9 (0.5%)		-3.7E-0004	2.2E-0001
35 108-35 4.00W 28 1.52 ± 0.01 E-9 (0.5%) 1.8779% -5.0E-0004 2.6E-0001	35	108-35 4.00W 28	$1.52 \pm$	0.01 E-9 (0.5%)	1.8779%	-5.0E-0004	2.6E-0001
36 108-36 6.00W 28 2.22 ± 0.01 E-9 (0.5%) 1.7483% -4.1E-0004 2.2E-0001	36	108-36 6.00W 28	$2.22 \pm$	0.01 E-9 (0.5%)	1.7483%	-4.1E-0004	2.2E-0001
37 108-37 fuse 28- 2.80 ± 0.01 E-9 (0.5%) 6.1022% -4.2E-0004 7.6E-0002	37	108-37 fuse 28-	$2.80 \pm$	0.01 E-9 (0.5%)	6.1022%	-4.2E-0004	7.6E-0002
38 108-38 refuse (379.35 ± 2.99 E-12 (0.8%) 17.5740% -4.6E-0004 2.7E-0002	38	108-38 refuse ($379.35 \pm$	2.99 E-12 (0.8%)	17.5740%	-4.6E-0004	2.7E-0002
39 108-39 re2fuse 129.28 ± 2.58 E-12 (2.0%) 66.1976% -4.6E-0004 2.8E-0003	39	108-39 re2fuse	$129.28 \pm$	2.58 E-12 (2.0%)	66.1976%	-4.6E-0004	2.8E-0003
40 108-40 re3fuse 27.55 ± 3.32 E-12 (12.0%) 93.8440% -4.6E-0004 -5.4E-0005	40	108-40 re3fuse	$27.55 \pm$	3.32 E-12 (12.0%)	93.8440%	-4.6E-0004	-5.4E-0005

Integrated Results:

Age = $91.020 \pm 0.350 \text{ Ma}$ $40\text{Ar}^* / 39\text{K} = 8.812 \pm 0.012$ Total 39K Vol = 3.4974E-0009 ccNTP/gTotal $40\text{Ar}^* \text{ Vol} = 3.082 \pm 0.004 \text{ E-8}$ $(40\text{Ar} / 36\text{Ar}) \text{sam} = 2875.71 \pm 11.56$ Total Atm 40Ar Vol = 3.5294E-0009 ccNTP/g $(36\text{Ar} / 40\text{Ar}) \text{sam} = 0.00034774 \pm 0.00000187$ Corr 36/40 & 39/40 ratios = -0.366285 $(37\text{Ar} / 40\text{Ar}) \text{sam} = 0.07680711 \pm 0.00007895$ Corr 36/40 & 37/40 ratios = -0.247375 $(39\text{Ar} / 40\text{Ar}) \text{sam} = 0.10182620 \pm 0.00006831$ Corr 37/40 & 39/40 ratios = 0.464814 $37\text{Ca} / 39\text{K} = 7.543 \pm 0.007 \text{ E-1}$ Mass = 1.000 g

F1 = -5.381 E-4 F2 = 5.762 E-2

P22-116 HK9728 WR

NewAge 981201 AgeParams 990623 (Fractionation relative to 40Ar/36Ar = 286.97)

No	Name	Temp	Cum 39K		Age		40Ar* / 39K	
1	116-1 0.20W 8-	1		0.843	± 37.044	Ma	$4.862 \pm$	3.59
2	116-2 0.40W 8-	2	0.01894 5	8.226			$5.580 \pm$	0.19
3	116-3 0.50W 8-	3	0.03065 9	7.596	± 2.593	Ma	$9.456 \pm$	0.26
4	116-4 0.70W 8-	4		9.742			$9.669 \pm$	0.27
5	116-05 0.90w 8	5	0.21331 10	1.046			$9.799 \pm$	0.07
6	116-06 1.20w 9	6	0.40356 10	4.178	± 0.279		$0.112 \pm$	0.03
7	116-07 1.4w 9-	7	0.54483 9	9.745	± 0.373	Ma	$9.670 \pm$	0.04
8	116-08 1.6w 9-	8	0.63202 9	9.960	± 0.557	Ma	$9.691 \pm$	0.06
9	116-09 2.0w 9-	9	0.76105 10	7.115	± 0.413		$0.406 \pm$	0.04
10	pay up to here!	10	0.83171 11	0.269	± 0.625	Ma 1	$0.721 \pm$	0.06
11	116-11 2.7w 9-	11	0.88323 11			Ma 1	$1.013 \pm$	0.06
12	116-12 3.2w 9-	12	0.92465 11	7.175	± 0.852	Ma 1	$1.415 \pm$	0.09
13	116-13 3.5w 9-	13	0.97003 12	1.931	± 0.682	Ma 1	$1.894 \pm$	0.07
14	116-14 4.0w 9-	14	0.99188 13	4.586	± 1.137	Ma 1	$3.175 \pm$	0.12
15	116-15 6w 9-Ju	15	0.99735 15	6.990	± 4.434	Ma 1	$5.465 \pm$	0.46
16	116-16 10w 10-J	16	1.00000 18	0.831	± 10.360	Ma 1	$7.934 \pm$	1.08
No	Name	Cum 36S		/ 36Ar		40ArAcc/g		/ 39K
1	116-1 0.20W 8-	0.02940	313.5		14.11	2.5E-0011		193.700 m
2	116-2 0.40W 8-	0.29582	339.0		1.69	2.3E-0010		12.075 m
3	116-3 0.50W 8-	0.34802	540.3		12.13	4.5E-0011	$2.714 \pm$	
4	116-4 0.70W 8-	0.51646			17.34	1.5E-0010	$3.287 \pm$	
5	116-05 0.90w 8	0.64518			24.85	1.1E-0010	$2.225 \pm$	
6	116-06 1.20w 9	0.72201			72.20	6.6E-0011	$783.085 \pm$	
7	116-07 1.4w 9-	0.75394	5232.5		200.04	2.8E-0011	$510.538 \pm$	
8	116-08 1.6w 9-	0.78512	3422.4		187.91	2.7E-0011	685.781 ±	
9	116-09 2.0w 9-	0.83550	3370.3		117.66	4.4E-0011	$1.128 \pm$	0.004
10	pay up to here!	0.86592	3169.9		160.25	2.6E-0011	885.760 ±	
11	116-11 2.7w 9-	0.89146			129.34	2.2E-0011	$783.225 \pm$	
12	116-12 3.2w 9-	0.91458			152.78	2.0E-0011	859.523 ±	
13	116-13 3.5w 9-	0.94880	2115.2		69.47	3.0E-0011	640.694 ±	
14	116-14 4.0w 9-	0.97587			53.10	2.3E-0011	694.622 ±	
15	116-15 6w 9-Ju	0.99398			44.01	1.6E-0011	705.221 ±	31.842 m
16	116-16 10w 10-J	1.00000	1205.3	5 ±	221.76	5.2E-0012	732.391 ±	77.705 m
		407		,		7. G.	-1	
No	Name		* Vol ccNTP	_	0.0	Atm Cont	F1	F2
1	116-1 0.20W 8-	1.55 ±	1.14 E-12		3.9%)	94.2553%	-4.0E-0004	1.8E-0004
2	116-2 0.40W 8- 116-3 0.50W 8-	33.88 ± 37.35 ±	1.16 E-12 1.03 E-12		3.4%) 2.8%)	87.1693%	-6.7E-0004 -1.9E-0003	1.4E-0003 1.7E-0002
						54.6914%		3.5E-0002
4		200.26 ±	5.31 E-12 3.21 E-12		2.6%)	42.0820% 21.7170%	-2.3E-0003	
5 6	116-05 0.90w 8 116-06 1.20w 9			•).8%)		-1.6E-0003	6.2E-0002
		460.80 ±	3.62 E-12	•).6%)	9.2781%	-5.6E-0004	5.8E-0002
7		285.03 ±	2.74 E-12).6%)	5.6473%	-3.6E-0004 -4.9E-0004	6.8E-0002
8			2.09 E-12).7%)	8.6343%		5.8E-0002
9 10		452.88 ±	2.82 E-12).6%) \ 7% \	8.7677%	-8.0E-0004	8.4E-0002
10	pay up to here!		1.91 E-12).7%) \ 7% \	9.3219%	-6.3E-0004	6.2E-0002
11		191.38 ±	1.39 E-12 1.41 E-12).7%) \ 0% \	10.3356%	-5.6E-0004	4.8E-0002
12		159.47 ±).9%) \ 7% \	11.1313%	-6.1E-0004 -4.6E-0004	4.7E-0002
13		182.06 ±	1.35 E-12).7%) 0%)	13.9698%		2.6E-0002
14	116-14 4.0w 9- 116-15 6w 9-Ju	97.13 ±	0.96 E-12		0%)	19.4009%	-5.0E-0004	1.7E-0002
15 16	116-15 6W 9-JU 116-16 10w 10-J	28.55 ± 16.01 ±	0.84 E-12 0.96 E-12		2.9%) 5.0%)	35.4005% 24.5157%	-5.0E-0004 -5.2E-0004	6.3E-0003 9.8E-0003
Τ0	TTO-TO TOW TO-0	TO.OT T	0.90 6-12	, ,	,.U-o)	71.7T)/0	J.ZE-0004	9.0E-0003

P22-116 HK9728 WR

Integrated Results:

F1 = -8.101 E-4

Age = 105.386 ± 0.480 Ma 40Ar* / 39K = 10.233 ± 0.029 Total 39K Vol = 3.3732E-0010 ccNTP/g Total 40Ar* Vol = 3.452 ± 0.009 E-9 (40Ar / 36Ar)sam = 1476.25 ± 9.90 Total Atm 40Ar Vol = 8.6383E-0010 ccNTP/g (36Ar / 40Ar)sam = 0.00067739 ±0.00000578 Corr 36/40 & 39/40 ratios =-0.353008 (37Ar / 40Ar)sam = 0.08877576 ±0.00023670 Corr 36/40 & 37/40 ratios =-0.262641 (39Ar / 40Ar)sam = 0.07816519 ±0.00015102 Corr 37/40 & 39/40 ratios = 0.568640 37Ca / 39K = 1.136 ± 0.003 Mass = 1.000 g

F2 = 3.454 E-2

P22-327 HK10981 WR

NewAge 981201 AgeParams 990623 (Fractionation relative to 40Ar/36Ar = 286.97)

No	Name	Temp	Cum 39K		Αç	ge		40Ar* /	39K	
1	27-01 0.20w 11-	1	0.00844	537.654	±	5.674	Ma !	59.058 ±		0.72
2	27-02 0.25w 11-	2	0.04184	91.788	±	2.422	Ma	$8.878 \pm$		0.24
3	27-03 0.30W 11-	3	0.07359	88.176	±	1.581	Ma	$8.520 \pm$		0.16
4	27-04 0.40W 11-	4	0.14706	91.704	±	0.710	Ma	$8.870 \pm$		0.07
5	27-05 0.50W 11-	5	0.23177	90.952	±	0.568	Ma	$8.796 \pm$		0.06
6	27-06 0.60w 12-	6	0.28412	89.560	±	0.592	Ma	$8.658 \pm$		0.06
7	27-07 0.70w 12-	7	0.36130	88.295	±	0.501	Ma	$8.532 \pm$		0.05
8	27-08 0.80w 12-	8	0.43855	88.792	±	0.326	Ma	$8.582 \pm$		0.03
9	27-09 0.90w 12-	9	0.51274	90.255	±	0.507	Ma	$8.726 \pm$		0.05
10	27-10 1.00w 13-	10	0.57536	91.827	±	0.555	Ma	$8.882 \pm$		0.06
11	27-11 1.10w 13-	11	0.68028	91.582	±	0.320		$8.858 \pm$		0.03
12	27-12 1.20w 13-	12	0.72350	90.741	±	0.710	Ma	$8.775 \pm$		0.07
13	27-13 1.40W 13-	13	0.79493	93.151	±	0.410	Ma	$9.014 \pm$		0.04
14	27-14 1.60W 13-	14	0.83231	93.271	±	0.815	Ma	$9.026 \pm$		0.08
15	27-15 2.0W 13-A	15	0.87718	97.207	±	0.554	Ma	$9.417 \pm$		0.06
16	27-16 2.50W 13-	16	0.93114	97.312	±	0.472	Ma	$9.427 \pm$		0.05
17	27-17 5.00W 13-	17	0.97580	97.909	±	0.501	Ma	$9.487 \pm$		0.05
18	27-18 10w 14-Au	18	1.00000	98.861	±	1.225	Ma	$9.582 \pm$		0.12
No	Name	Cum 36S		r / 36Aı			40ArAcc/g			/ 39K
1	27-01 0.20w 11-	0.43504		.66 ±		9.69	1.4E-0010	219.87		
2	27-02 0.25w 11-	0.57942		.70 ±		1.28	4.5E-0011	808.96		
3	27-03 0.30W 11-	0.63465		.95 ±		7.41	1.7E-0011	650.15		
4	27-04 0.40W 11-	0.69637		.30 ±		9.27	1.9E-0011	724.57		10.175 m
5	27-05 0.50W 11-	0.73691	6695	.09 ±		4.84	1.3E-0011	946.89		10.397 m
6	27-06 0.60w 12-	0.74455	20941	.09 ±	9693	3.47	2.4E-0012	621.62	0 ±	10.431 m
7	27-07 0.70w 12-	0.76934	9549	.87 ±	1635	5.00	7.8E-0012	663.18	8 ±	9.121 m
8	27-08 0.80w 12-	0.79444		.68 ±	1044	4.70	7.9E-0012	866.59	6 ±	6.816 m
9	27-09 0.90w 12-	0.81925	9379	.12 ±	1599	9.92	7.8E-0012	759.76	1 ±	10.317 m
10	27-10 1.00w 13-	0.83279	14605	.28 ±	4243	3.10	4.2E-0012	599.33	7 ±	9.264 m
11	27-11 1.10w 13-	0.85804	13114	.03 ±	1770	0.70	7.9E-0012	688.00	2 ±	7.034 m
12	27-12 1.20w 13-	0.87270	9302	.62 ±	2210	0.32	4.6E-0012	597.56	5 ±	13.718 m
13	27-13 1.40W 13-	0.89436	10642	.93 ±	1613	1.20	6.8E-0012	1.16	5 ±	0.009
14	27-14 1.60W 13-	0.90745	9274	.19 ±	2466	5.22	4.1E-0012	1.14	8 ±	0.013
15	27-15 2.0W 13-A	0.92706	7797	.15 ±	1122	2.16	6.1E-0012	1.47	5 ±	0.011
16	27-16 2.50W 13-	0.95640	6333	.79 ±	61	7.69	9.2E-0012	1.21	8 ±	0.014
17	27-17 5.00W 13-	0.98144	6188	.43 ±	616	5.24	7.8E-0012	695.96	5 ±	11.695 m
18	27-18 10w 14-Au	1.00000	4644	.73 ±	862	2.45	5.8E-0012	578.85	3 ±	25.143 m

P22-327 HK10981 WR

No	Name	40Ar*	Vol ccNTP/g		Atm Cont	F1	F2
1	27-01 0.20w 1	l1- 183.95 ±	2.16 E-12 (1.2%)	42.5386%	-1.6E-0004	2.6E-0004
2	27-02 0.25w 1	L1- 109.39 ±	2.97 E-12 (2.7%)	29.2371%	-5.8E-0004	1.7E-0002
3	27-03 0.30W 1	L1- 99.78 ±	1.86 E-12 (1.9%)	14.7680%	-4.6E-0004	3.5E-0002
4	27-04 0.40W 1	L1- 240.38 ±	2.16 E-12 (0.9%)	7.4390%	-5.2E-0004	7.7E-0002
5	27-05 0.50W 1	L1- 274.84 ±	2.17 E-12 (0.8%)	4.4137%	-6.8E-0004	1.6E-0001
6	27-06 0.60w 1	L2- 167.16 ±	1.39 E-12 (0.8%)	1.4111%	-4.4E-0004	2.9E-0001
7	27-07 0.70w 1	L2- 242.93 ±	1.82 E-12 (0.7%)	3.0943%	-4.7E-0004	1.7E-0001
8	27-08 0.80w 1	L2- 244.52 ±	1.50 E-12 (0.6%)	3.1133%	-6.2E-0004	2.1E-0001
9	27-09 0.90w 1	L2- 238.80 ±	1.80 E-12 (0.8%)	3.1506%	-5.4E-0004	1.8E-0001
10	27-10 1.00w 1	L3- 205.18 ±	1.61 E-12 (0.8%)	2.0232%	-4.3E-0004	2.1E-0001
11	27-11 1.10w 1	L3- 342.83 ±	2.04 E-12 (0.6%)	2.2533%	-4.9E-0004	2.2E-0001
12	27-12 1.20w 1	L3- 139.87 ±	1.30 E-12 (0.9%)	3.1765%	-4.3E-0004	1.5E-0001
13	27-13 1.40W 1	L3- 237.50 ±	1.58 E-12 (0.7%)	2.7765%	-8.3E-0004	2.7E-0001
14	27-14 1.60W 1	L3- 124.45 ±	1.26 E-12 (1.0%)	3.1863%	-8.2E-0004	2.4E-0001
15	27-15 2.0W 13	3-A 155.86 ±	1.18 E-12 (0.8%)	3.7898%	-1.1E-0003	2.5E-0001
16	27-16 2.50W 1	L3- 187.63 ±	1.30 E-12 (0.7%)	4.6655%	-8.7E-0004	1.8E-0001
17	27-17 5.00W 1	l3- 156.30 ±	1.11 E-12 (0.7%)	4.7750%	-5.0E-0004	1.1E-0001
18	27-18 10w 14-	-Au 85.52 ±	1.16 E-12 (1.4%)	6.3621%	-4.1E-0004	6.8E-0002

Integrated Results:

Age = $96.207 \pm 0.405 \text{ Ma}$

 $40 \text{Ar}^* / 39 \text{K} = 9.317 \pm 0.021$ Total 39K Vol = 3.6887E-0010 ccNTP/g Total $40 \text{Ar}^* \text{Vol} = 3.437 \pm 0.007 \text{ E-9}$ (40Ar / 36Ar)sam = 3540.00 ± 60.07 Total Atm 40Ar Vol = 3.1302E-0010 ccNTP/g (36Ar / 40Ar)sam = 0.00028249 ±0.00000650 Corr 36/40 & 39/40 ratios =-0.551907

 (36Ar / 40Ar)sam = 0.00028249 ±0.00000650
 Corr 36/40 & 39/40 ratios =-0.551907

 (37Ar / 40Ar)sam = 0.08151392 ±0.00030548
 Corr 36/40 & 37/40 ratios =-0.258413

 (39Ar / 40Ar)sam = 0.09836702 ±0.00016546
 Corr 37/40 & 39/40 ratios = 0.415052

 $37Ca / 39K = 8.287 \pm 0.028 E-1$ Mass = 1.000 g

F1 = -5.911 E-4 F2 = 7.406 E-2

P22-413 HK1651 WR

NewAge 981201 AgeParams 990623 (Fractionation relative to 40Ar/36Ar = 286.97)

	27		_	a 2011			_		407 +	,	20**
No	Name	1.0	Temp	Cum 39K	150 412		Age		40Ar*		
1	413-01 0.13w		1		159.413		41.570		15.715		4.28
2	413-02 0.20w		2		150.377		11.018		14.786		1.13
3	413-03 0.25w		3		105.491		11.206		10.243		1.12
4	413-04 0.30W		4		101.595		5.945		9.854		0.59
5	413-05 0.40W		5	0.00938	89.363		3.352		8.638		0.33
6	413-06 0.50W		6	0.02356	77.138		1.112		7.431		0.11
7	413-07 0.55w		7	0.04348	93.092		1.354		9.008		0.13
8	413-08 0.60w		8	0.06002	91.125		1.321		8.813		0.13
9	413-09 0.65w		9	0.07944	83.408		2.078		8.049		0.21
10	413-10 0.70w		10	0.09885	72.175		0.561		6.943		0.06
11	413-11 0.70w		11	0.10980	67.473		0.638		6.482		0.06
12	413-12 0.75w		12	0.12244	70.519		0.747		6.781		0.07
13	413-13 0.80w		13	0.13742	69.735		0.570		6.704		0.06
14	413-14 0.85w		14	0.15492	69.871		0.426		6.717		0.04
15	413-15 0.90w		15	0.17149	69.949		0.360		6.725		0.04
16	413-16 0.95W		16	0.18845	70.474		0.498		6.776		0.05
17	413-17 1.00W		17	0.20362	68.892		0.428		6.621		0.04
18	413-18 1.10W	15	18	0.22308	67.263		0.533		6.462		0.05
19	413-19 1.20W	15	19	0.24829	68.640	±	0.305		6.597	±	0.03
20	413-20 1.30W	15	20	0.28789	69.998	±	0.295		6.730		0.03
21	413-21 1.40W	16	21	0.32317	71.592	±	0.233	Ma	6.886	±	0.02
22	413-22 1.50w	16	22	0.37981	71.967	±	0.199		6.923	±	0.02
23	413-23 1.55w	16	23	0.41510	72.998	±	0.244	Ma	7.024	±	0.02
24	413-24 1.60w	16	24	0.45037	73.365	±	0.265	Ma	7.060	±	0.03
25	413-25 1.65w	16	25	0.48495	73.805	±	0.290	Ma	7.103	±	0.03
26	413-26 1.70w	su	26	0.51836	73.977	±	0.303	Ma	7.120	±	0.03
27	413-27 1.75w	17	27	0.54490	74.523	±	0.271	Ma	7.174	±	0.03
28	413-28 1.80w	17	28	0.57287	74.909	±	0.282	Ma	7.212	±	0.03
29	413-29 1.90w	17	29	0.60252	74.092	±	0.493	Ma	7.131	±	0.05
30	413-30 2.00w	17	30	0.64339	75.853	±	0.202	Ma	7.305	±	0.02
31	413-31 2.10w	17	31	0.67502	75.030	±	0.282	Ma	7.224	±	0.03
32	413-32 2.20w	17	32	0.70613	74.711	±	0.322	Ma	7.192	±	0.03
33	413-33 2.30w	17	33	0.73603	73.507	±	0.415	Ma	7.074	±	0.04
34	413-34 2.50w	17	34	0.77190	75.609	±	0.270	Ma	7.281	±	0.03
35	413-35 2.70W	17	35	0.80328	75.544	±	0.287	Ма	7.274	±	0.03
36	413-36 3.00W	17	36	0.85005	75.863	±	0.198	Ма	7.305	±	0.02
37	413-37 3.40W	17	37	0.91693	76.605	±	0.171	Ма	7.379	±	0.02
38	413-38 3.70W	17	38	0.96297	75.631	±	0.208		7.283	±	0.02
39	413-39 4.20W	17	39	0.98232	75.419	±	0.317	Ма	7.262		0.03
40	413-40 5.00W	17	40	0.99220	77.077	±	0.560	Ma	7.425	±	0.06
41	413-41 5.00w		41	0.99571	78.830	±	2.486		7.597	±	0.24
42	413-42 5.00w	рi	42	1.00000	81.749	±	1.321	Ма	7.885	±	0.13

P22-413 HK1651 WR

No	Name	Cum 36S	40Ar /	36	Ar	40ArAcc/g	37Ca	/ 39K
1	413-01 0.13w 13	0.00682	402.36	±	39.33	1.1E-0011	$0.785 \pm$	1.442
2	413-02 0.20w 13	0.04396	501.17	±	22.66	5.8E-0011	827.930 ±	271.104 m
3	413-03 0.25w 13	0.06442	453.08	±	25.56	3.2E-0011	$1.697 \pm$	0.360
4	413-04 0.30W 13	0.08982	483.92		17.61	4.0E-0011	926.012 ±	219.833 m
5	413-05 0.40W 13	0.12628	567.41	±	18.76	5.7E-0011	833.916 ±	97.094 m
6	413-06 0.50W 13	0.20837	638.91	±	8.93	1.3E-0010	693.601 ±	23.307 m
7	413-07 0.55w 14	0.32603	703.60	±	10.06	1.8E-0010	$808.423 \pm$	36.870 m
8	413-08 0.60w 14	0.41442	736.84	±	12.57	1.4E-0010	626.453 ±	27.308 m
9	413-09 0.65w 14	0.49909	789.79	±	18.49	1.3E-0010	$388.840 \pm$	26.098 m
10	413-10 0.70w 14	0.56411	850.00	±	11.19	1.0E-0010	285.666 ±	19.412 m
11	413-11 0.70w re	0.59752	864.20	±	15.78	5.2E-0011	310.529 ±	18.864 m
12	413-12 0.75w 15	0.63064	988.20	±	24.68	5.2E-0011	299.397 ±	18.741 m
13	413-13 0.80w 15	0.66046	1196.66	±	29.98	4.7E-0011	$219.144 \pm$	14.461 m
14	413-14 0.85w 15	0.67991	1912.74	±	63.02	3.1E-0011	258.281 ±	13.904 m
15	413-15 0.90w 15	0.69140	2889.88	±	126.62	1.8E-0011	$237.684 \pm$	12.095 m
16	413-16 0.95W 15	0.69555	7706.99	±	1352.87	6.5E-0012	$246.429 \pm$	10.183 m
17	413-17 1.00W 15	0.70311	3854.69	±	280.73	1.2E-0011	281.101 ±	15.590 m
18	413-18 1.10W 15	0.71653	2801.20	±	186.67	2.1E-0011	$307.231 \pm$	13.784 m
19	413-19 1.20W 15	0.72925	3797.16	±	187.70	2.0E-0011	294.355 ±	12.277 m
20	413-20 1.30W 15	0.74660	4405.77	±	243.65	2.7E-0011	$315.729 \pm$	5.840 m
21	413-21 1.40W 16	0.75955	5316.45	±	271.82	2.0E-0011	$323.242 \pm$	7.195 m
22	413-22 1.50w 16	0.78389	4605.35	±	125.63	3.8E-0011	$357.338 \pm$	5.326 m
23	413-23 1.55w 16	0.79680	5434.09	±	282.90	2.0E-0011	$365.850 \pm$	8.503 m
24	413-24 1.60w 16	0.81086	5035.70	±	250.49	2.2E-0011	$409.688 \pm$	8.793 m
25	413-25 1.65w 16	0.82694	4384.77	±	196.42	2.5E-0011	$476.543 \pm$	9.349 m
26	413-26 1.70w su	0.84257	4368.62	±	227.22	2.5E-0011	$525.030 \pm$	13.089 m
27	413-27 1.75w 17	0.85499	4397.51	±	197.54	1.9E-0011	546.693 ±	11.800 m
28	413-28 1.80w 17	0.86674	4891.74	±	271.95	1.8E-0011	567.545 ±	9.846 m
29	413-29 1.90w 17	0.88006	4543.29	±	255.44	2.1E-0011	$622.715 \pm$	10.563 m
30	413-30 2.00w 17	0.89747	4883.59	±	163.33	2.7E-0011	$732.927 \pm$	10.680 m
31	413-31 2.10w 17	0.90971	5290.96	±	304.87	1.9E-0011	$685.020 \pm$	9.619 m
32	413-32 2.20w 17	0.92189	5212.49	±	336.44	1.9E-0011	684.951 ±	12.376 m
33	413-33 2.30w 17	0.93298	5395.98	±	322.83	1.7E-0011	654.515 ±	11.662 m
34	413-34 2.50w 17	0.94449	6369.87	±	420.33	1.8E-0011	$657.532 \pm$	8.372 m
35	413-35 2.70W 17	0.95276	7686.26	±	712.86	1.3E-0011	$607.602 \pm$	9.446 m
36	413-36 3.00W 17	0.96684	6789.56	±	317.68	2.2E-0011	$587.051 \pm$	6.773 m
37	413-37 3.40W 17	0.98326	8336.87	±	346.71	2.6E-0011	481.197 ±	4.952 m
38	413-38 3.70W 17	0.99276	9745.38	±	703.05	1.5E-0011	$395.831 \pm$	5.892 m
39	413-39 4.20W 17	0.99691	9358.82	±	1142.84	6.5E-0012	$398.773 \pm$	13.225 m
40	413-40 5.00W 17	0.99841	13357.02	±	4199.81	2.4E-0012	$422.932 \pm$	24.037 m
41	413-41 5.00w na	0.99924	8859.81	±	8243.92	1.3E-0012	$326.408 \pm$	96.460 m
42	413-42 5.00w pi	1.00000	12236.56	±	8023.64	1.2E-0012	$468.874 \pm$	86.458 m

P22-413 HK1651 WR

No	Name	40Ar*	Vol ccNTP/g		Atm Cont	F1	F2
1	413-01 0.13w 13		1.05 E-12 (27.2%)	73.4416%	-5.6E-0004	9.3E-0004
2	413-02 0.20w 13		2.99 E-12 (7.4%)	58.9615%	-5.9E-0004	2.6E-0003
3	413-03 0.25w 13	$17.11 \pm$	1.86 E-12 (10.9%)	65.2197%	-1.2E-0003	6.0E-0003
4	413-04 0.30W 13	$25.42 \pm$	1.51 E-12 (5.9%)	61.0639%	-6.6E-0004	4.3E-0003
5	413-05 0.40W 13	$52.63 \pm$	2.02 E-12 (3.8%)	52.0789%	-5.9E-0004	6.7E-0003
6	413-06 0.50W 13	$149.65 \pm$	2.28 E-12 (1.5%)	46.2505%	-4.9E-0004	8.4E-0003
7	413-07 0.55w 14	$254.95 \pm$	3.88 E-12 (1.5%)	41.9982%	-5.8E-0004	9.6E-0003
8	413-08 0.60w 14	$207.11 \pm$	3.19 E-12 (1.5%)	40.1037%	-4.5E-0004	8.2E-0003
9	413-09 0.65w 14	$222.18 \pm$	5.75 E-12 (2.6%)	37.4152%	-2.8E-0004	6.4E-0003
10	413-10 0.70w 14	$191.41 \pm$	1.78 E-12 (0.9%)	34.7645%	-2.0E-0004	6.1E-0003
11	413-11 0.70w re	$100.89 \pm$	1.09 E-12 (1.1%)	34.1934%	-2.2E-0004	7.3E-0003
12	413-12 0.75w 15	$121.81 \pm$	1.44 E-12 (1.2%)	29.9028%	-2.1E-0004	8.3E-0003
13	413-13 0.80w 15	$142.67 \pm$	1.38 E-12 (1.0%)	24.6937%	-1.6E-0004	8.0E-0003
14	413-14 0.85w 15	$166.99 \pm$	1.31 E-12 (0.8%)	15.4491%	-1.8E-0004	1.7E-0002
15	413-15 0.90w 15	$158.33 \pm$	1.13 E-12 (0.7%)	10.2253%	-1.7E-0004	2.5E-0002
16	413-16 0.95W 15	$163.27 \pm$	1.41 E-12 (0.9%)	3.8342%	-1.8E-0004	7.0E-0002
17	413-17 1.00W 15	$142.79 \pm$	1.13 E-12 (0.8%)	7.6660%	-2.0E-0004	4.0E-0002
18	413-18 1.10W 15	$178.61 \pm$	1.67 E-12 (0.9%)	10.5490%	-2.2E-0004	3.2E-0002
19	413-19 1.20W 15	$236.33 \pm$	1.56 E-12 (0.7%)	7.7821%	-2.1E-0004	4.2E-0002
20	413-20 1.30W 15	$378.67 \pm$	2.44 E-12 (0.6%)	6.7071%	-2.3E-0004	5.1E-0002
21	413-21 1.40W 16	$345.16 \pm$	2.03 E-12 (0.6%)	5.5582%	-2.3E-0004	6.2E-0002
22	413-22 1.50w 16	$557.15 \pm$	3.08 E-12 (0.6%)	6.4164%	-2.5E-0004	5.8E-0002
23	413-23 1.55w 16	$352.19 \pm$	2.09 E-12 (0.6%)	5.4379%	-2.6E-0004	6.9E-0002
24	413-24 1.60w 16	$353.75 \pm$	2.12 E-12 (0.6%)	5.8681%	-2.9E-0004	7.1E-0002
25	413-25 1.65w 16	$349.01 \pm$	2.13 E-12 (0.6%)	6.7392%	-3.4E-0004	7.1E-0002
26	413-26 1.70w su	337.99 ±	2.16 E-12 (0.6%)	6.7642%	-3.7E-0004	7.7E-0002
27	413-27 1.75w 17	$270.60 \pm$	1.65 E-12 (0.6%)	6.7197%	-3.9E-0004	8.0E-0002
28	413-28 1.80w 17	$286.60 \pm$	1.78 E-12 (0.6%)	6.0408%	-4.0E-0004	9.1E-0002
29	413-29 1.90w 17	$300.39 \pm$	2.50 E-12 (0.8%)	6.5041%	-4.4E-0004	9.4E-0002
30	413-30 2.00w 17	$424.16 \pm$	2.36 E-12 (0.6%)	6.0509%	-5.2E-0004	1.1E-0001
31	413-31 2.10w 17	$324.66 \pm$	2.00 E-12 (0.6%)	5.5850%	-4.9E-0004	1.2E-0001
32	413-32 2.20w 17	$317.86 \pm$	2.05 E-12 (0.6%)	5.6691%	-4.9E-0004	1.2E-0001
33	413-33 2.30w 17	$300.52 \pm$	2.27 E-12 (0.8%)	5.4763%	-4.7E-0004	1.2E-0001
34	413-34 2.50w 17	$371.07 \pm$	2.24 E-12 (0.6%)	4.6390%	-4.7E-0004	1.3E-0001
35	413-35 2.70W 17	$324.35 \pm$	2.03 E-12 (0.6%)	3.8445%	-4.3E-0004	1.5E-0001
36	413-36 3.00W 17	$485.53 \pm$	2.67 E-12 (0.6%)	4.3523%	-4.2E-0004	1.3E-0001
37	413-37 3.40W 17	$701.13 \pm$	3.73 E-12 (0.5%)	3.5445%	-3.4E-0004	1.3E-0001
38	413-38 3.70W 17	$476.41 \pm$	2.66 E-12 (0.6%)	3.0322%	-2.8E-0004	1.3E-0001
39	413-39 4.20W 17	$199.65 \pm$	1.29 E-12 (0.6%)	3.1574%	-2.8E-0004	1.2E-0001
40	413-40 5.00W 17	$104.24 \pm$	0.91 E-12 (0.9%)	2.2123%	-3.0E-0004	1.7E-0001
41	413-41 5.00w na	$37.85 \pm$	1.23 E-12 (3.3%)	3.3353%	-2.3E-0004	9.3E-0002
42	413-42 5.00w pi	$48.07 \pm$	0.82 E-12 (1.7%)	2.4149%	-3.3E-0004	1.7E-0001

P22-413 HK1651 WR

Integrated Results:

Age = $74.743 \pm 0.293 \text{ Ma}$ Total 39K Vol = 1.4208E-0009 ccNTP/g $40Ar* / 39K = 7.195 \pm 0.010$ Total 40Ar* Vol = $1.022 \pm 0.001 E-8$ Total Atm 40Ar Vol = 1.5689E-0009 ccNTP/g $(40Ar / 36Ar)sam = 2221.15 \pm 12.28$ $(36Ar / 40Ar)sam = 0.00045022 \pm 0.00000329$ Corr 36/40 & 39/40 ratios =-0.428023 $(37Ar / 40Ar)sam = 0.05802619 \pm 0.00027296$ Corr 36/40 & 37/40 ratios =-0.112706 $(39Ar / 40Ar)sam = 0.12048802 \pm 0.00011974$ Corr 37/40 & 39/40 ratios = 0.192960 $37Ca / 39K = 4.816 \pm 0.022 E-1$ Mass = 1.000 g F2 = 3.443 E-2F1 = -3.435 E-4

Standards:

APPENDIX B

RAW DATA FOR ANALYSES OF FAULT ROCK SAMPLES

P23-20 HK12078 K-feldspar

NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar = 286.97)

No	Name	Temp	Cum 39K			Aqe	غ		40Ar*	/ 39	9K		
1	20-01 0.13w 15-	1	0.00088	4.0	02 :	_	3.305	Ма	44.985			3.45	
2	20-02 0.13w 20s	2	0.00838	32.1			2.499		364.600			8.56	
3	20-03 0.20w 30s	5	0.05458	61.3			0.747		700.985			8.68	
4	20-04 0.20w 35s	6	0.07128	65.8			2.010		752.893			3.40	
5	20-05 0.25w 18-	7	0.10099	65.2			L.520		745.454			7.69	
6	20-06 0.30w 18-	8	0.12761	63.6			L.163		727.302			3.53	
7	20-07 0.40w 18-	9	0.18740	65.8			0.649		753.410			7.56	
8	20-08 0.50w 18-	10	0.24713	63.0			0.616		720.005			7.16	
9	20-08 0.50w 18-	11	0.24713	63.2			0.882		720.003			0.25	
10	20-10 0.70w 18-	12	0.33391	64.1			L.149		733.145			3.36	
11	20-10 0.70w 18- 20-11 0.80w 19-	13	0.36182	65.9			L.353		754.388			5.76	
12	20-11 0.80w 19- 20-12 1.00w 19-	14	0.30162	63.8			0.856		729.595			9.95	
13	20-12 1.00w 19- 20-13 1.4w 19-A	15	0.43403	63.3).839		723.310			9.76	
14	20-13 1.4w 19-A 20-14 1.80w 19-	16	0.43403	66.9			0.656					7.65	
15	20-14 1.80W 19- 20-15 2.3W 19-A	17	0.73227	67.0).312		765.465 767.374			3.63	
16													
	20-16 2.50w 19-	18	0.81561	68.3			795		782.581			9.27	
17	20-17 2.70w 19-	19	0.84937	68.7			L.313		786.482			5.31	
18	20-18 3.00w 19-	20	0.89841	68.8			0.894		788.398			0.42	
19	20-19 3.50W 19-	21	0.94195	70.0			0.804		801.821			9.39	
20	20-20 5.00W 19-	22	0.97958	69.3			L.087		793.778			2.68	
21	20-21 7.00W 19-	23	0.99280	72.3			2.758		829.028			2.23	
22	20-22 10.0W 19-	24	0.99671	75.6			3.460		867.598			9.05	
23	20-23 fuse 19-A	25	1.00000	64.7	/14 :	± 9	9.854	Ma	739.732	±	11	4.67	
No	Name	Cum 36S	40A:	r / 3	86Ar			40ArAcc	/g	370	Ca	/ 39K	
No 1	Name 20-01 0.13w 15-	Cum 36S 0.03629		r / 3 .82 ±			. 67	40ArAcc 8.9E-00	_	370 .858		/ 39K 1.407	
			296		=	2	. 67 . 03		11 1	.858	±		m
1	20-01 0.13w 15-	0.03629	296 331	.82 ±	:	2 2		8.9E-00	11 1 10 -48	.858	± ±	1.407	
1 2	20-01 0.13w 15- 20-02 0.13w 20s	0.03629 0.12938	296 331 774	.82 ±	: :	2 2 4	.03	8.9E-00 2.3E-00	11 1 10 -48 10 32	.858 .989 .865	± ±	1.407 123.830	m
1 2 3	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s	0.03629 0.12938 0.21146	296 331 774 1523	.82 ± .18 ± .67 ± .73 ±	: : :	2 2 4 40	.03 .15	8.9E-00 2.3E-00 2.0E-00	11 1 10 -48 10 32 11 -111	.858 .989 .865	± ± ±	1.407 123.830 17.174	m m
1 2 3 4	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s	0.03629 0.12938 0.21146 0.22389	296 331 774 1523 2018	.82 ± .18 ± .67 ±	: : :	2 2 4 40	.03 .15 .16 .95	8.9E-00 2.3E-00 2.0E-00 3.1E-00	11 1 10 -48 10 32 11 -111 11 59	.858 .989 .865 .364	± ± ± ±	1.407 123.830 17.174 55.410	m m m
1 2 3 4 5	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18-	0.03629 0.12938 0.21146 0.22389 0.23950	296 331 774 1523 2018 3493	.82 ± .18 ± .67 ± .73 ± .21 ±	: : : :	2 2 4 40 40	.03 .15 .16 .95	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00	11 1 10 -48 10 32 11 -111 11 59 11 40	.858 .989 .865 .364 .716	± ± ± ±	1.407 123.830 17.174 55.410 32.227	m m m
1 2 3 4 5 6	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685	296 331 774 1523 2018 3493 4460	.82 ± .18 ± .67 ± .73 ± .21 ± .53 ±	: : : : :	2 4 40 40 128	.03 .15 .16 .95 .28	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00	11 1 10 -48 10 32 11 -111 11 59 11 40 11 58	.858 .989 .865 .364 .716	± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483	m m m m
1 2 3 4 5 6 7	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999	296 331 774 1523 2018 3493 4460	.82 ± .18 ± .67 ± .73 ± .21 ± .53 ± .34 ± .57 ±		2 4 40 40 128 143	.03 .15 .16 .95 .28	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00	11 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26	.858 .989 .865 .364 .716 .268	± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466	m m m m m
1 2 3 4 5 6 7 8	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559	296 331 774 1523 2018 3493 4460 9613	.82 ± .18 ± .67 ± .73 ± .21 ± .53 ± .34 ± .57 ± .22 ±	= = = = = = = = = = = = = = = = = = =	2 4 40 40 128 143 961	.03 .15 .16 .95 .28 .11	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00	11 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26 12 48	.858 .989 .865 .364 .716 .268 .844 .560	± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346	m m m m m
1 2 3 4 5 6 7 8 9	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879	296 331 774 1523 2018 3493 4460 9613 31110 18592	.82 ± .18 ± .67 ± .73 ± .21 ± .53 ± .57 ± .22 ± .67 ±	= = = = = = = = = = = = = = = = = = =	2 4 40 128 143 961 3153 4879	.03 .15 .16 .95 .28 .11 .90	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00 3.5E-00 4.3E-00	11 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26 12 48 12 47	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749	± ± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834	m m m m m m
1 2 3 4 5 6 7 8 9 10	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26989	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714	.82 ± .18 ± .67 ± .73 ± .53 ± .54 ± .57 ± .57 ± .67 ± .67 ±	= = = = = = = = = = = = = = = = = = =	2 4 40 40 128 143 961 3153 4879 7546	.03 .15 .16 .95 .28 .11 .90 .33	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00 3.5E-00 4.3E-00 2.7E-00	11 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26 12 48 12 47 12 48	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487	± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429	m m m m m m m
1 2 3 4 5 6 7 8 9 10 11	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26889 0.27178	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731	.82 ± .18 ± .67 ± .73 ± .53 ± .54 ± .57 ± .57 ± .67 ± .67 ± .67 ±	= = = = = = = = = = = = = = = = = = =	2 4 40 40 128 143 961 3153 4879 7546 3185	.03 .15 .16 .95 .28 .11 .90 .33 .20	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00 3.5E-00 4.3E-00 2.7E-00 4.7E-00	11 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26 12 48 12 47 12 48 12 48 12 25	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487	± ± ± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257	m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26989 0.27178	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154	.82 ± .18 ± .67 ± .67 ± .53 ± .53 ± .57 ± .22 ± .67 ± .43 ± .55 ± .46 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00 3.5E-00 4.3E-00 2.7E-00 1.3E-00	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453	± ± ± ± ± ± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511	m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26879 0.27178 0.27707	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814	.82 ± .18 ± .67 ± .73 ± .53 ± .57 ± .57 ± .67 ± .67 ± .67 ± .67 ± .67 ± .63 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00 3.5E-00 4.3E-00 2.7E-00 4.7E-00 1.3E-00 1.2E-00	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.858 .989 .865 .364 .716 .268 .844 .560 .989 .487 .220 .453 .507	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664	m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26989 0.27178 0.27707 0.32438 0.60222	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814	.82 ± .18 ± .67 ± .73 ± .21 ± .53 ± .57 ± .22 ± .67 ± .43 ± .55 ± .46 ± .03 ± .64 ±	= = = = = = = = = = = = = = = = = = =	2 4 40 128 143 961 3153 4879 7546 3185 624 16	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00 3.5E-00 4.3E-00 2.7E-00 4.7E-00 1.3E-00 6.8E-00	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A 20-16 2.50w 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26989 0.27178 0.27707 0.32438 0.60222 0.71870	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814 1036 975	.82 ± .18 ± .67 ± .73 ± .21 ± .53 ± .57 ± .67 ± .67 ± .67 ± .67 ± .67 ± .64 ± .64 ± .47 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06 .12	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 4.3E-00 2.7E-00 4.7E-00 1.3E-00 1.2E-00 6.8E-00 2.9E-00	11 1 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26 12 48 12 47 12 48 12 25 11 17 10 2 10 0 10 5	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507 .029 .203	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100 9.353	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A 20-16 2.50w 19- 20-17 2.70w 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.27178 0.27707 0.32438 0.60222 0.71870 0.76810	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814 1036 975 948	.82 ± .18 ± .67 ± .73 ± .21 ± .53 ± .57 ± .22 ± .67 ± .43 ± .55 ± .46 ± .03 ± .47 ± .17 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16 4 6	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06 .12	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 1.4E-00 3.5E-00 4.3E-00 2.7E-00 4.7E-00 1.2E-00 6.8E-00 2.9E-00 1.2E-00	11 1 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26 12 48 12 47 12 48 12 25 11 17 10 2 10 0 10 5 10 -9	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507 .029 .203 .835	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100 9.353 46.379	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A 20-16 2.50w 19- 20-17 2.70w 19- 20-18 3.00w 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.27178 0.27707 0.32438 0.60222 0.71870 0.76810 0.84576	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814 1036 975 948 900	.82 ± .18 ± .67 ± .73 ± .53 ± .57 ± .57 ± .67 ± .67 ± .67 ± .14 ± .17 ± .14 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16 4 6	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06 .12 .08 .28	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 4.3E-00 2.7E-00 4.7E-00 1.3E-00 1.2E-00 6.8E-00 2.9E-00 1.2E-00 1.2E-00	11 1 1 10 -48 10 32 11 -111 11 59 11 40 11 58 11 26 12 48 12 47 12 48 12 25 11 17 10 2 10 0 10 5 10 -9 10 -4	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507 .029 .203 .835 .347	$\begin{smallmatrix} \pm & \pm $	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100 9.353 46.379 20.646	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A 20-16 2.50w 19- 20-17 2.70w 19- 20-18 3.00w 19- 20-19 3.50W 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.27178 0.27707 0.32438 0.60222 0.71870 0.76810 0.84576 0.91339	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814 1036 975 948 900 922	.82 ± .18 ± .67 ± .73 ± .53 ± .57 ± .57 ± .67 ± .67 ± .67 ± .17 ± .17 ± .14 ± .27 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16 4 6	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06 .12 .08 .28	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 4.3E-00 2.7E-00 4.7E-00 1.2E-00 6.8E-00 2.9E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00	11	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507 .029 .203 .835 .347 .810	$\begin{smallmatrix}\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&$	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100 9.353 46.379 20.646 22.599	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A 20-16 2.50w 19- 20-17 2.70w 19- 20-18 3.00w 19- 20-19 3.50W 19- 20-19 3.50W 19- 20-20 5.00W 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26989 0.27178 0.27707 0.32438 0.60222 0.71870 0.76810 0.84576 0.91339 0.96812	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814 1036 975 948 900 922 958	.82 ± .18 ± .67 ± .73 ± .53 ± .57 ± .57 ± .67 ± .67 ± .67 ± .14 ± .17 ± .27 ± .25 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16 10 5 7	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06 .12 .08 .28	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 4.3E-00 2.7E-00 4.7E-00 1.2E-00 6.8E-00 2.9E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00	11	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507 .029 .203 .835 .347 .810 .688	$\begin{smallmatrix} \pm \\ \pm $	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100 9.353 46.379 20.646 22.599 29.055	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-07 0.40w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A 20-16 2.50w 19- 20-17 2.70w 19- 20-18 3.00w 19- 20-19 3.50W 19- 20-20 5.00W 19- 20-21 7.00W 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.27178 0.27707 0.32438 0.60222 0.71870 0.76810 0.84576 0.91339 0.96812 0.98920	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814 1036 975 948 900 922 958 927	.82 ± .18 ± .67 ± .73 ± .53 ± .57 ± .57 ± .67 ± .67 ± .17 ± .17 ± .17 ± .27 ± .27 ± .27 ± .27 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16 4 6 10 5 7	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06 .12 .08 .28 .00 .18 .65 .16	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 4.3E-00 2.7E-00 4.7E-00 1.2E-00 6.8E-00 2.9E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00	11	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507 .029 .203 .835 .347 .810 .688 .514	$\begin{smallmatrix} \pm \\ \pm $	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100 9.353 46.379 20.646 22.599 29.055 63.998	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	20-01 0.13w 15- 20-02 0.13w 20s 20-03 0.20w 30s 20-04 0.20w 35s 20-05 0.25w 18- 20-06 0.30w 18- 20-08 0.50w 18- 20-09 0.60w 18- 20-10 0.70w 18- 20-11 0.80w 19- 20-12 1.00w 19- 20-13 1.4w 19-A 20-14 1.80w 19- 20-15 2.3w 19-A 20-16 2.50w 19- 20-17 2.70w 19- 20-18 3.00w 19- 20-19 3.50W 19- 20-19 3.50W 19- 20-20 5.00W 19-	0.03629 0.12938 0.21146 0.22389 0.23950 0.24685 0.25999 0.26559 0.26703 0.26879 0.26989 0.27178 0.27707 0.32438 0.60222 0.71870 0.76810 0.84576 0.91339 0.96812	296 331 774 1523 2018 3493 4460 9613 31110 18592 23714 14731 7154 1814 1036 975 948 900 922 958 927 944	.82 ± .18 ± .67 ± .73 ± .53 ± .57 ± .57 ± .67 ± .67 ± .67 ± .14 ± .17 ± .27 ± .25 ±		2 4 40 40 128 143 961 3153 4879 7546 3185 624 16 10 5 7 18 65	.03 .15 .16 .95 .28 .11 .90 .33 .20 .06 .64 .06 .12 .08 .28	8.9E-00 2.3E-00 2.0E-00 3.1E-00 3.8E-00 1.8E-00 3.2E-00 4.3E-00 2.7E-00 4.7E-00 1.2E-00 6.8E-00 2.9E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00 1.2E-00	11	.858 .989 .865 .364 .716 .268 .844 .560 .989 .749 .487 .220 .453 .507 .203 .835 .347 .810 .688 .514 .560	$\begin{smallmatrix} \pm & \pm $	1.407 123.830 17.174 55.410 32.227 39.466 23.483 14.346 19.449 29.834 32.429 39.257 26.511 16.664 5.100 9.353 46.379 20.646 22.599 29.055	m m m m m m m m m m m m m m m m m m m

P23-20 HK12078 K-feldspar

```
40Ar* Vol ccNTP/g
                                                     Atm Cont
                                                                                F2
No
      Name
                                                                   F1
1 20-01 0.13w 15- 398.59 ± 800.60 E-15 ( 200.9% )
                                                     99.5556% -1.3E-0003 -1.3E-0003
 2 20-02 0.13w 20s 27.65 \pm 1.41 E-12 ( 5.1%)
                                                     89.2268% 3.5E-0005
                                                                             3.4E-0005
                                                     38.1450% -2.3E-0005
                                                                             -1.7E-0005
 3 20-03 0.20w 30s 327.45 ± 1.98 E-12 ( 0.6% )
                            1.04 E-12 (
   20-04 0.20w 35s 127.14 ±
                                          0.8%)
                                                      19.3932%
                                                                  7.9E-0005
                                                                               2.9E-0005
 5 20-05 0.25w 18- 223.90 ±
                                                      14.6417%
                             1.38 E-12 (
                                          0.6%)
                                                                 -4.3E-0005
                                                                             -4.0E-0006
                            1.19 E-12 (
 6 20-06 0.30w 18- 195.75 ±
                                                                 -2.9E-0005
                                          0.6%)
                                                       8.4585%
                                                                              2.1E-0005
 7 20-07 \ 0.40w \ 18-455.52 \pm 2.55 \ E-12 (
                                         0.6%)
                                                       6.6251%
                                                                 -4.2E-0005
                                                                              4.9E-0005
8 20-08 0.50w 18- 434.81 \pm 2.67 E-12 ( 0.6% )
                                                                               7.7E-0005
                                                       3.0738%
                                                                 -1.9E-0005
9 20-09 0.60w 18- 369.09 ±
10 20-10 0.70w 18- 268.82 ±
                            2.08 E-12 (
1.78 E-12 (
                                                                 -3.5E-0005
                                          0.6%)
                                                       0.9498%
                                                                               5.5E-0004
                                          0.7%)
                                                       1.5893%
                                                                 -3.4E-0005
                                                                               3.0E-0004
                            1.38 E-12 (
11 20-11 0.80w 19- 212.88 ±
                                          0.6%)
                                                       1.2461%
                                                                 -3.5E-0005
                                                                               3.9E-0004
12 20-12 1.00w 19- 227.67 ± 1.53 E-12 (
                                          0.7%)
                                                       2.0059%
                                                                -1.8E-0005
                                                                              1.2E-0004
13 20-13 1.4w 19-A 302.34 ± 1.92 E-12 (
                                          0.6%)
                                                       4.1303% -1.2E-0005
                                                                              3.4E-0005
14 20-14 1.80w 19- 598.06 ± 3.27 E-12 ( 0.5% )
                                                     16.2897%
                                                                -1.8E-0006
                                                                             -4.0E-0007
                                                                             -1.3E-0008
15
   20-15 2.3w 19-A 1.71 ±
                             0.01 E -9 (
                                           0.5%)
                                                      28.5055%
                                                                 -2.1E-0008
                            4.03 E-12 (
16 20-16 2.50w 19- 659.42 ±
                                                      30.2932%
                                                                 -3.7E-0006
                                          0.6% )
                                                                             -2.4E-0006
17 20-17 2.70w 19- 268.44 ± 1.90 E-12 (
                                          0.7%)
                                                                 7.0E-0006
                                                                              4.7E-0006
                                                      31.1654%
18 20-18 3.00w 19- 390.96 ± 2.33 E-12 (
                                          0.6%)
                                                      32.8283%
                                                                 3.1E-0006
                                                                              2.2E-0006
                                                      32.0404% -3.0E-0005
19 20-19 3.50W 19- 352.92 ± 2.12 E-12 ( 0.6%)
                                                                             -2.1E-0005
                                                      30.8373%
20  20-20  5.00W  19- 302.02  ±   1.86  E-12 (   21  20-21  7.00W  19- 110.86  ±   1.17  E-12 (
                                          0.6%)
                                                                 -3.5E-0005
                                                                             -2.4E-0005
                                          1.1% )
                                                      31.8755%
                                                                 -5.5E-0005
                                                                             -3.9E-0005
22 20-22 10.0W 19- 34.26 ± 1.10 E-12 (
                                          3.2%)
                                                      31.2917%
                                                                 -1.2E-0004
                                                                             -8.5E-0005
23 20-23 fuse 19-A 24.61 ± 0.92 E-12 ( 3.7%)
                                                     30.8190% 4.8E-0005
                                                                             3.1E-0005
```

Integrated Results:

```
Age = 65.989 \pm 0.546 \, \text{Ma}
40Ar* / 39K = 754.579 \pm 2.548
                                               Total 39K Vol = 1.0111E-0011 ccNTP/q
                                               Total 40Ar* Vol = 7.630 \pm 0.013 E-9
(40Ar / 36Ar)sam = 1211.84 \pm
                                 2.83
                                               Total Atm 40Ar Vol = 2.4604E-0009 ccNTP/g
                                              Corr 36/40 & 39/40 ratios =-0.101121
(36Ar / 40Ar)sam = 0.00082519 \pm 0.00000241
(37Ar / 40Ar)sam = 0.00002121 \pm 0.00000509
                                               Corr 36/40 & 37/40 ratios =-0.001843
(39Ar / 40Ar)sam = 0.00100209 \pm 0.00000298
                                               Corr 37/40 & 39/40 ratios =-0.000620
37Ca / 39K = 2.117 \pm 0.508 E-2
                                                Mass = 1.000 q
                                                F2 = -7.917 E-6
F1 = -1.510 E-5
```

P23-37 HK12078 Rambler Channel Fault: 14

NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40 Ar/36 Ar = 286.97) 1 37-01 0.2w 5-A 10 0.09471 122.227 ± 27.174 Ma 1419.795 ± 326.46

2 37-02 fuse 4 w 11 1.00000 89.262 \pm 2.202 Ma 1027.349 \pm 25.98

No Name Cum 36S 40Ar / 36Ar 40ArAcc/g 37Ca / 39K 1 37-01 0.2w 5-A 0.65511 410.43 ± 5.35 8.3E-0011 -179.134 ± 494.632 m 2 37-02 fuse 4 w 1.00000 1805.44 ± 33.83 4.4E-0011 -34.552 ± 28.754 m

No Name 40Ar* Vol ccNTP/g Atm Cont F1 F2

1 37-01 0.2w 5-A 32.18 ± 1.09 E-12 (3.4%) 71.9972% 1.3E-0004 1.2E-0004
2 37-02 fuse 4 w 222.57 ± 1.39 E-12 (0.6%) 16.3672% 2.5E-0005 1.0E-0005

 $40Ar* / 39K = 1.065 \pm 0.034 E 3$ Total 39K Vol = 2

Integrated Results:

Age = $92.410 \pm 2.966 \text{ Ma}$

 $40Ar* / 39K = 1.065 \pm 0.034 E 3$ Total 39K Vol = 2.3931E-0013 ccNTP/g

Total 40Ar* Vol = 2.548 ± 018 E-10

 $(40Ar / 36Ar)sam = 891.56 \pm 9.55$ Total Atm 40Ar Vol = 1.2630E-0010 ccNTP/q

 $37Ca / 39K = -4.825 \pm 5.347 E-2$ Mass = 1.000 g

F1 = 3.441 E-5 F2 = 2.687 E-5

P23-39 HK12078 Rambler Channel Fault: 14

NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar =286.97)

Fractions:

No	Name	Temp	Cum 39K		Age		40Ar* / 39K	• •
1	39-01 0.20w 10-	21	0.02328	47.173	8 ± 85.768	Ma 53	6.600 ± 9	88.43
2	39-02 0.20w 30s	22	0.03248	96.224	1 ± 329.476	Ma 110	9.640 ± 39	01.69
3	39-03 0.50w 10-	23	0.19787	46.736	5 ± 8.470	Ma 53	1.562 ±	97.59
4	39-04 0.80w 10-	24	0.36303	98.252	2 ± 21.436	Ma 113	3.663 ± 2	54.14
5	39-05 fuse 8w 1	25	1.00000	106.562	2 ± 6.108	Ma 123	2.415 ±	72.75
No	Name	Cum 36S	40Aı	r / 36 <i>1</i>	Ar	40ArAcc/q	37Ca	. / 39K
1	39-01 0.20w 10-	0.47356	306	.14 ±	5.89	4.5E-0011		
2	39-02 0.20w 30s	0.50431	429	.38 ±	161.10	2.9E-0012	-6.805 ±	24.119
3	39-03 0.50w 10-	0.88084	389	.66 ±	9.84	3.6E-0011	-213.106 ±	: 311.852 m
4	39-04 0.80w 10-	0.95160	1362	.65 ±	210.49	6.8E-0012	232.810 ±	408.953 m
5	39-05 fuse 8w 1	1.00000	6836	.09 ±	1370.73	4.6E-0012	17.285 ±	96.643 m
No	Name	40Ar*	Vol ccN	TP/a		Atm Cont	F1	F2
1	39-01 0.20w 10-		0.88 E-3	_	53.6%)	96.5243%	-2.5E-0004	-2.4E-0004
2	39-02 0.20w 30s	$1.34 \pm$	1.01 E-3	12 (75.6%)	68.8204%	4.9E-0003	4.6E-0003
3	39-03 0.50w 10-	11.51 ±	0.91 E-1	12 (7.9%)	75.8351%	1.5E-0004	1.4E-0004
4	39-04 0.80w 10-	$24.51 \pm$	1.06 E-3	12 (4.3%)	21.6857%	-1.7E-0004	-1.0E-0004
5	39-05 fuse 8w 1	$102.75 \pm$	1.06 E-3	12 (1.0%)	4.3226%	-1.2E-0005	1.3E-0005

Integrated Results:

Age = $93.962 \pm 7.340 \text{ Ma}$

40Ar* / 39K = 1.083 ± 0.086 E 3	Total 39K Vol = 1.3089E-0013 ccNTP/g
	Total 40Ar*Vol = 1.417 ± 0.022 E-10
$(40Ar / 36Ar)sam = 732.21 \pm 16.69$	Total Atm 40Ar Vol = 9.5903E-0011 ccNTP/g
(36Ar / 40Ar)sam = 0.00136572 ±0.00003625 (37Ar / 40Ar)sam =-0.00002221 ±0.00007476 (39Ar / 40Ar)sam = 0.00055079 ±0.00004340	Corr 36/40 & 39/40 ratios =-0.059731 Corr 36/40 & 37/40 ratios = 0.000822 Corr 37/40 & 39/40 ratios =-0.001548
$37Ca / 39K = -0.403 \pm 1.358 E-1$	Mass = 1.000 g
F1 = 2.876 E-5	F2 = 2.422 E-5

P23-40 HK12078 Rambler Channel Fault: 14

NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar = 286.97)

Fractions:

No	Name	Temp	Cum 39K		Age		40Ar* / 39K	
1	40-01 0.20w 5s	12	0.00945 1	1.318 ±	12.820	Ma 12	27.467 ± 14	14.83
2	40-02 0.20w 30s	13	0.09363 3	4.695 ±	3.732	Ma 39	3.293 ±	12.71
3	40-03 0.25w 6-	14	0.13215 3	8.788 ±	8.769	Ma 44	0.192 ± 10	0.59
4	40-04 0.35w 6-	15	0.16261 7	2.797 ±	20.713	Ma 83	4.002 ± 24	12.13
5	40-05 0.80w 6-	16	0.18731 6	4.887 ±	21.481	Ma 74	1.748 ± 25	50.00
6	40-06 3.00w 6-	17	0.35538 6	2.122 ±	3.160	Ma 70	19.597 ± 3	36.72
7	40-07 4.00w 10-	18	0.57527 8	$8.500 \pm$	3.208	Ma 101	.8.364 ±	37.83
8	40-08 5.00w 10-	19	0.65930 8	$3.085 \pm$	8.359	Ma 95	4.611 ±	98.26
9	40-09 fuse 10w	20	1.00000 7	4.309 ±	1.725	Ma 85	1.688 ± 2	20.18
No	Name	Cum 36S	40Ar	/ 36Ar		40ArAcc/g	37Ca	/ 39K
1	40-01 0.20w 5s	0.06018	316.8	2 ±	21.81	9.7E-0012	$0.728 \pm$	1.182
2	40-02 0.20w 30s	0.25251	478.8	0 ±	13.00	3.1E-0011	$302.586 \pm$	166.995 m
3	40-03 0.25w 6-	0.33711	508.9	6 ±	37.62	1.4E-0011	$-52.226 \pm$	297.933 m
4	40-04 0.35w 6-	0.50210	459.4	2 ±	17.01	2.7E-0011	$411.438 \pm$	499.378 m
5	40-05 0.80w 6-	0.59597	503.3	6 ±	34.17	1.5E-0011	$-167.590 \pm$	392.429 m
6	40-06 3.00w 6-	0.70218	1491.2	0 ±	58.16	1.7E-0011	$122.145 \pm$	57.417 m
7	40-07 4.00w 10-	0.75637	4696.0	3 ±	469.53	8.8E-0012	$73.279 \pm$	59.422 m
8	40-08 5.00w 10-	0.78957	2868.7	3 ±	418.73	5.4E-0012	$-85.742 \pm$	128.968 m
9	40-09 fuse 10w	1.00000	1763.8	9 ±	59.43	3.4E-0011	$45.027 \pm$	38.258 m
No	Name		Vol ccNTP			Atm Cont	F1	F2
1	40-01 0.20w 5s				4%)	93.2710%	-5.2E-0004	-4.9E-0004
2	40-02 0.20w 30s		0.85 E-12	•	4%)	61.7174%	-2.2E-0004	-1.8E-0004
3	40-03 0.25w 6-	$9.87 \pm$	1.01 E-12		2%)	58.0591%	3.7E-0005	3.0E-0005
4	40-04 0.35w 6-	$14.79 \pm$	1.00 E-12	•	7%)	64.3202%	-2.9E-0004	-2.7E-0004
5	40-05 0.80w 6-	$10.67 \pm$	1.03 E-12	(9.	7%)	58.7053%	1.2E-0004	1.1E-0004
6	40-06 3.00w 6-	69.43 \pm	0.76 E-12	(1.	1%)	19.8163%	-8.7E-0005	-3.0E-0005
7	40-07 4.00w 10-	130.36 \pm	1.10 E-12	(0.	8%)	6.2925%	-5.2E-0005	3.6E-0005
8	40-08 5.00w 10-	$46.70 \pm$	0.82 E-12	(1.	7%)	10.3007%	6.1E-0005	-3.4E-0006
9	40-09 fuse 10w	$168.93 \pm$	1.43 E-12	(0.	8%)	16.7528%	-3.2E-0005	-1.0E-0005

Integrated Results:

```
Age = 70.619 \pm 1.796 \text{ Ma}
```

 $40 \text{Ar}^* / 39 \text{K} = 808.568 \pm 20.020$ Total 39K Vol = 5.8215E-0013 ccNTP/g

Total 40Ar* Vol = $4.707 \pm 0.030 E-10$

 $(40Ar / 36Ar)sam = 1156.52 \pm 19.41$ Total Atm 40Ar Vol = 1.6155E-0010 ccNTP/g

 $37Ca / 39K = 8.350 \pm 3.597 E-2$ Mass = 1.000 g

F1 = -5.957 E-5 F2 = -3.472 E-5

P23-124 HK3419 fd. Tuen Mun Fault mylonite
NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar = 286.97)

No	Name	Temp	Cum 39K		Age		40Ar* / 39K
1	124-01 0.50w	7	0.00020	$23.812 \pm$	17.995 Ma	269.110	± 204.72
2	124-02 0.60w 8	8	0.00056	$28.695 \pm$	12.899 Ma	324.736	± 147.14
3	124-03 0.70w 8	9	0.00180	$9.126 \pm$	2.297 Ma	102.720	± 25.92
4	124-04 0.80w 8	10	0.01042	$3.996 \pm$	0.434 Ma	44.917	± 4.89
5	124-05 0.90W 8	11	0.02327	$4.084 \pm$	0.255 Ma	45.901	± 2.87
6	124-06 1.00W 8	12	0.04614	$4.191 \pm$	0.295 Ma	47.104	± 3.32
7	124-07 1.10w 9	13	0.05394	$8.127 \pm$	0.383 Ma	91.450	± 4.31
8	124-08 1.10w r	14	0.09964	$5.380 \pm$	0.151 Ma	60.493	± 1.71
9	124-09 1.20 w	16	0.11376	$9.286 \pm$	0.361 Ma	104.520	± 4.08
10	124-10 2.30w 9	18	0.14171	$11.833 \pm$	0.338 Ma	133.289	± 3.82
11	124-11 2.50w 9	19	0.14569	$26.546 \pm$	1.572 Ma	300.231	± 17.91
12	124-12 2.70W 9	20	0.15588	$27.246 \pm$	1.231 Ma	308.209	± 14.03
13	124-13 2.90W 9	21	0.17107	$29.309 \pm$	1.347 Ma	331.745	± 15.37
14	124-14 3.00W 10	22	0.26078	$33.833 \pm$	0.590 Ma	383.423	± 6.75
15	124-15 3.20w 10	23	0.26345	$71.874 \pm$	5.237 Ma	823.216	± 61.19
16	124-16 5.0w 26-	24	0.33475	$71.268 \pm$	0.986 Ma	816.143	± 11.51
17	124-17 5.00w 26	25	0.37244	$81.189 \pm$	0.698 Ma	932.337	± 8.20
18	124-18 7.0w 26-	26	0.48161	$78.891 \pm$	0.686 Ma	905.366	± 8.04
19	124-19 8.0w 26-	27	0.61896	$79.617 \pm$	0.654 Ma	913.883	± 7.67
20	124-20 8.0w 26	28	0.69785	$78.813 \pm$	0.536 Ma	904.448	± 6.29
21	124-21 9.0w 27-	29	0.78230	$82.770 \pm$	0.605 Ma	950.912	± 7.11
22	124-22 9.0w 60s	30	0.83322	82.110 \pm	0.547 Ma	943.150	± 6.43
23	124-23 9.0w nb	31	0.85942	$80.185 \pm$	0.932 Ma	920.543	± 10.94
24	124-24 nb 9 27-	32	0.89842	$79.882 \pm$	0.681 Ma	916.985	± 8.00
25	124-25 9w 60 27	33	0.93848	$80.716 \pm$	0.636 Ma	926.777	± 7.47
26	124-26 9w nb 60	34	0.96816	$80.233 \pm$	0.590 Ma	921.114	± 6.93
27	124-27 10w 120s	35	0.97977	$81.756 \pm$	1.930 Ma	938.994	± 22.67
28	124-28 12w 27-0	36	0.98973	83.167 \pm	2.396 Ma	955.578	± 28.17
29	124-29 narrbe 2	37	0.99389	$75.137 \pm$	3.202 Ma	861.375	± 37.48
30	124-30 rere-try	38	1.00000	51.185 ±	2.950 Ma	582.885	± 34.07

P23-124 HK3419 fd. Tuen Mun Fault myloni

No	Name	Cum 36S	40Ar /	36Ar		40ArAcc/g	37Ca	/ 39K
1	124-01 0.50w	0.00072	548.68	±	202.16	2.0E-0012	$2.128 \pm$	2.534
2	124-02 0.60w 8	0.00270	494.97	±	77.92	5.5E-0012	1.998 ±	1.479
3	124-03 0.70w 8	0.00675	402.55	±	34.21	1.1E-0011	26.781 ±	324.940 m
4	124-04 0.80w 8	0.01969	396.73	±	13.59	3.6E-0011	272.067 ±	71.515 m
5	124-05 0.90W 8	0.03419	433.34	±	11.13	4.0E-0011	$126.734 \pm$	58.615 m
6	124-06 1.00W 8	0.05611	461.98	±	15.76	6.1E-0011	187.531 ±	35.033 m
7	124-07 1.10w 9	0.07476	425.06	±	7.44	5.2E-0011	287.002 ±	56.987 m
8	124-08 1.10w r	0.12552	479.98	±	4.92	1.4E-0010	191.750 ±	13.302 m
9	124-09 1.20 w	0.15179	485.78	±	7.28	7.3E-0011	280.295 ±	39.806 m
10	124-10 2.30w 9	0.20522	531.74	±	6.71	1.5E-0010	341.838 ±	27.626 m
11	124-11 2.50w 9	0.21793	614.07	±	18.45	3.5E-0011	878.065 ±	97.398 m
12	124-12 2.70W 9	0.24807	648.31	±	7.89	8.4E-0011	657.762 ±	47.683 m
13	124-13 2.90W 9	0.28310	782.77	±	8.30	9.7E-0011	$617.783 \pm$	38.496 m
14	124-14 3.00W 10	0.39070	1378.25	±	9.88	3.0E-0010	585.392 ±	15.175 m
15	124-15 3.20w 10	0.39546	1862.95	±	139.07	1.3E-0011	$607.241 \pm$	177.339 m
16	124-16 5.0w 26-	0.44615	4183.86	±	48.93	1.4E-0010	356.160 ±	22.999 m
17	124-17 5.00w 26	0.46299	7361.72	±	148.12	4.7E-0011	167.761 ±	32.223 m
18	124-18 7.0w 26-	0.53780	4770.92	±	56.40	2.1E-0010	193.377 ±	15.783 m
19	124-19 8.0w 26-	0.62646	5091.55	±	111.08	2.5E-0010	$218.756 \pm$	9.877 m
20	124-20 8.0w 26	0.67767	5014.89	±	139.35	1.4E-0010	$245.241 \pm$	30.600 m
21	124-21 9.0w 27-	0.73691	4887.27	±	72.66	1.6E-0010	$228.160 \pm$	14.766 m
22	124-22 9.0w 60s	0.78261	3855.08	±	64.89	1.3E-0010	255.832 ±	28.145 m
23	124-23 9.0w nb	0.80754	3573.21	±	105.02	6.9E-0011	$327.299 \pm$	78.570 m
24	124-24 nb 9 27-	0.84431	3589.91	±	44.71	1.0E-0010	154.663 ±	42.927 m
25	124-25 9w 60 27	0.87902	3919.22	±	46.19	9.6E-0011	299.019 ±	57.886 m
26	124-26 9w nb 60	0.91353	2978.88	±	58.48	9.6E-0011	$430.337 \pm$	80.695 m
27	124-27 10w 120s	0.93610	1931.18	±	52.64	6.3E-0011	676.319 ±	164.678 m
28	124-28 12w 27-0	0.95724	1820.06	±	30.79	5.9E-0011	416.438 ±	138.895 m
29	124-29 narrbe 2	0.97145	1150.90	±	37.08	3.9E-0011	$1.424 \pm$	0.295
30	124-30 rere-try	1.00000	717.92	±	22.72	7.9E-0011	$1.504 \pm$	0.264

P23-124 HK3419 fd. Tuen Mun Fault myloni

No	Name	40Ar*	Vol ccNTP/g		Atm Cont	F1	F2
1	124-01 0.50w	$1.72 \pm$	0.74 E-12 (43.2%)	53.8563%	-1.5E-0003	-9.6E-0004
2	124-02 0.60w 8	$3.71 \pm$	0.87 E-12 (23.4%)	59.7003%	-1.4E-0003	-1.1E-0003
3	124-03 0.70w 8	$4.07 \pm$	0.96 E-12 (23.5%)	73.4076%	-1.9E-0005	-1.1E-0005
4	124-04 0.80w 8	$12.31 \pm$	1.24 E-12 (10.1%)	74.4843%	-1.9E-0004	-2.3E-0005
5	124-05 0.90W 8	$18.76 \pm$	1.08 E-12 (5.7%)	68.1920%	-9.0E-0005	1.6E-0005
6	124-06 1.00W 8	$34.28 \pm$	2.17 E-12 (6.3%)	63.9633%	-1.3E-0004	5.1E-0005
7	124-07 1.10w 9	$22.70 \pm$	0.92 E-12 (4.0%)	69.5193%	-2.0E-0004	-9.1E-0005
8	124-08 1.10w r	$87.94 \pm$	1.80 E-12 (2.0%)	61.5651%	-1.4E-0004	2.7E-0005
9	124-09 1.20 w	$46.94 \pm$	1.15 E-12 (2.5%)	60.8301%	-2.0E-0004	-5.7E-0005
10	124-10 2.30w 9	$118.55 \pm$	2.17 E-12 (1.8%)	55.5720%	-2.4E-0004	-7.5E-0005
11	124-11 2.50w 9	$38.04 \pm$	1.10 E-12 (2.9%)	48.1218%	-6.3E-0004	-3.7E-0004
12	124-12 2.70W 9	$99.87 \pm$	1.27 E-12 (1.3%)	45.5800%	-4.7E-0004	-2.6E-0004
13	124-13 2.90W 9	$160.30 \pm$	1.64 E-12 (1.0%)	37.7503%	-4.4E-0004	-1.9E-0004
14	124-14 3.00W 10	$1.09 \pm$	0.01 E -9 (0.6%)	21.4402%	-4.2E-0004	4.4E-0005
15	124-15 3.20w 10	$69.93 \pm$	1.06 E-12 (1.5%)	15.8620%	-4.3E-0004	-1.1E-0004
16	124-16 5.0w 26-	$1.85 \pm$	0.01 E -9 (0.5%)	7.0629%	-2.5E-0004	2.2E-0004
17	124-17 5.00w 26	$1.12 \pm$	0.01 E -9 (0.5%)	4.0140%	-1.2E-0004	2.4E-0004
18	124-18 7.0w 26-	$3.14 \pm$	0.02 E -9 (0.6%)	6.1938%	-1.4E-0004	1.3E-0004
19	124-19 8.0w 26-	$3.99 \pm$	0.02 E -9 (0.6%)	5.8037%	-1.6E-0004	1.6E-0004
20	124-20 8.0w 26	$2.27 \pm$	0.01 E -9 (0.5%)	5.8925%	-1.7E-0004	1.8E-0004
21	124-21 9.0w 27-	$2.55 \pm$	0.01 E -9 (0.5%)	6.0463%	-1.6E-0004	1.5E-0004
22	124-22 9.0w 60s	$1.53 \pm$	0.01 E -9 (0.6%)	7.6652%	-1.8E-0004	8.7E-0005
23	124-23 9.0w nb	$767.45 \pm$	4.69 E-12 (0.6%)	8.2699%	-2.3E-0004	9.2E-0005
24	124-24 nb 9 27-	$1.14 \pm$	0.01 E -9 (0.5%)	8.2314%	-1.1E-0004	4.5E-0005
25	124-25 9w 60 27	$1.18 \pm$	0.01 E -9 (0.6%)	7.5398%	-2.1E-0004	1.1E-0004
26	124-26 9w nb 60	$869.72 \pm$	5.03 E-12 (0.6%)	9.9198%	-3.1E-0004	4.3E-0005
27	124-27 10w 120s	$346.75 \pm$	2.54 E-12 (0.7%)	15.3015%	-4.8E-0004	-1.5E-0004
28	124-28 12w 27-0	$302.72 \pm$	1.92 E-12 (0.6%)	16.2357%	-3.0E-0004	-1.1E-0004
29	124-29 narrbe 2	$114.12 \pm$	1.42 E-12 (1.2%)	25.6755%	-1.0E-0003	-6.2E-0004
30	124-30 rere-try	$113.27 \pm$	2.59 E-12 (2.3%)	41.1608%	-1.1E-0003	-7.7E-0004

P23-124 HK3419 fd. Tuen Mun Fault myloni

Integrated Results:

```
Age = 63.558 \pm 0.532 \text{ Ma}
40Ar* / 39K = 726.287 \pm 2.608
                                                   Total 39K Vol = 3.1812E-0011 ccNTP/g
                                                   Total 40Ar* Vol
                                                                        = 2.310 \pm 0.004 E-8
(40Ar / 36Ar)sam = 2755.69 \pm 10.49
                                                   Total Atm 40Ar Vol = 2.7752E-0009 ccNTP/g
                                                  Corr 36/40 & 39/40 ratios =-0.064490
Corr 36/40 & 37/40 ratios =-0.010347
(36Ar / 40Ar)sam = 0.00036289 \pm 0.00000184
(37Ar / 40Ar)sam = 0.00037941 \pm 0.00000876
(39Ar / 40Ar)sam = 0.00122922 \pm 0.00000397
                                                   Corr 37/40 \& 39/40 \text{ ratios} = 0.004655
37Ca / 39K = 3.087 \pm 0.072 E-1
                                                   Mass = 1.000 g
F1 = -2.202 E-4
                                                  F2 = 7.194 E-5
```

Standards:

Name	F1	F2	40Ar* / 39K	Age	J	
р23-16 Т	CR3 n=2 -1.6E-000	5.9E-000	4 3.156 ± 0.0	037 E 2	27.920 Ma	4.94142E-0005
р23-29 Т	CR3 N=3 -1.2E-000	5 2.9E-000	4 3.190 ± 0.0	043 E 2	27.920 Ma	4.88962E-0005
p23-28 T	CR3 n=3 -2.2E-000	5 6.8E-000	$4 3.120 \pm 0.0$	050 E 2	27.920 Ma	4.99960E-0005

P23-125 HK7284 Schist..unfinished: 6 ste

NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar = 286.97)

Fractions:

No	Name	Temp (Cum.39K		Age		40Ar* / 39K	
1	125-01 0.14w 23	1	0.05828	58.387	± 73.194	Ma 66	6.232 ± 84	18.78
2	125-02 0.18w 23	2	0.26634	111.512	± 47.504	Ma 129	1.450 ± 56	57.33
3	125-03 0.20w 23	3	0.46335	102.035	± 33.685	Ma 117	8.568 ± 40	00.19
4	125-04 0.23W 23	4	0.53368	46.981	± 46.869	Ma 53	4.381 ± 54	10.08
5	125-05 0.26W 23	5	0.68585	164.490	± 66.431	Ma 193	3.540 ± 83	L7.02
6	125-06 0.30W 23	6	1.00000	86.003	± 17.378	Ma 98	8.946 ± 20	04.63
No	Name	Cum 36S	4 N D	r / 36Aı	^	40ArAcc/q	37Ca	/ 39K
1	125-01 0.14w 23	0.09086		.68 ±	68.48	5.8E-0012	0.547 ±	5.566
2	125-02 0.18w 23	0.42837		.64 ±	28.18	2.1E-0011	-0.329 ±	
3	125-03 0.20w 23	0.55778		.05 ±	79.52	8.2E-0012	1.454 ±	
4	125-04 0.23W 23	0.59795		.34 ±	187.31	2.5E-0012	-3.510 ±	4.444
5	125-05 0.26W 23	0.78327		.27 ±	70.43	1.2E-0011	-0.339 ±	
6	125-06 0.30W 23	1.00000	765	.71 ±	30.62	1.4E-0011	$-31.604 \pm$	568.039 m
No	Name		Vol ccN	_		Atm Cont	F1	F2
1	125-01 0.14w 23	$2.73 \pm$	0.91 E-	•	3.3%)	67.8253%	-3.9E-0004	-3.6E-0004
2	125-02 0.18w 23	$18.91 \pm$	1.07 E-	12 (5	5.7%)	53.0868%	2.3E-0004	2.2E-0004
3	125-03 0.20w 23	$16.34 \pm$	0.78 E-	12 (1.8%)	33.4256%	-1.0E-0003	-8.3E-0004
4	125-04 0.23W 23	$2.64 \pm$	0.77 E-	12 (29	9.2%)	49.0586%	2.5E-0003	1.9E-0003
5	125-05 0.26W 23	$20.71 \pm$	1.00 E-	12 (1.8%)	36.2013%	2.4E-0004	2.2E-0004
6	125-06 0.30W 23	$21.86 \pm$	0.56 E-	12 (2	2.6%)	38.5919%	2.3E-0005	1.8E-0005

Integrated Results:

Age = $102.341 \pm 17.604 \text{ Ma}$

40Ar* / 39K = 1.182 ± 0.209 E 3 Total 39K Vol = 7.0376E-0014 ccNTP/g

Total 40Ar* Vol = 8.320 ± 0.212 E-11

(40Ar / 36Ar)sam = 683.28 ± 22.85 Total Atm 40Ar Vol = 6.3400E-0011 ccNTP/g

(36Ar / 40Ar)sam = 0.00146353 ±0.00005627 Corr 36/40 & 39/40 ratios =-0.040591

(37Ar / 40Ar)sam = -0.00002806 ±0.00030647 Corr 36/40 & 37/40 ratios =-0.000869

(39Ar / 40Ar)sam = 0.00048006 ±0.00008426 Corr 37/40 & 39/40 ratios =-0.002704

37Ca / 39K = -0.585 ± 6.385 E-1 Mass = 1.000 g

F1 = 4.170 E-5 F2 = 3.634 E-5

P23-126 HK7729 WR(rusty stain) Pat Sin L
NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar = 286.97)

No	Name	Temp	Cum 39K			Αq	1 0		/	0Ar*	/ 20	אנ		
1	126-01c 0.80w 1	3	0.00018	Λ	206	_	2.110	Мэ		1.309			3.70	
2	126-01C 0.80W 1	4	0.00016		821		1.117			1.941			2.57	
3	126-03 1.00W 10	5	0.00544		989		0.152			.587			L.71	
4	126-03 1.00W 10 126-04 1.10W 10	6	0.00344		869		0.132			1.239			1.52	
5	126-05 1.20W 10	7	0.00730		572		0.402			1.239			1.32 L.81	
6	126-05 1.20w 10 126-06 1.20w re	8	0.01193		956		0.695			1.091			7.84	
7	126-00 1.20w 1e	9	0.01249		711		0.826			.611			9.33	
8	126-07 1.20w 45	10	0.02470		492		0.820			.833			0.62	
9	126-08 1.20w 30 126-09 1.20w 13	11	0.02971		495		0.655			.557			7.50	
10	126-10 3.0w 27-	12	0.02303		972		0.033			.347			L.68	
11	126-10 3.0W 27- 126-11 4.0W 27-	13	0.10304		790		0.608			.661			7.19	
12	126-11 4.0W 27- 126-12 5.0W 27-	14	0.10304		185		1.109			.364			2.99	
13	126-12 5.0w 27- 126-13 6.0w 28-	15	0.36405		694		1.298			6.671			1.99 1.97	
					501									
14	126-14 6.5w 28-	16	0.54470				1.311			.852			5.10	
15	126-15 7.0w 28-	17	0.66140		933		1.109			.972			2.86	
16	126-16 8.0w 28-	18	0.83320		592		0.833			.848			9.64	
17 18	126-17 9.0W 28-	19	0.88575		396		0.810			.023			9.53	
	126-18 11.0W 28	20	0.93806		982					.474			1.92	
19	126-19 14.0W 28	21	0.97930		869		0.405			7.712			1.78	
20	126-20 18.0W 28	22	0.99726		855		0.677			.778			3.00	
21	126-21 10.0W, n	23	0.99848				7.441			.693			0.42	
22	126-22 naerbe 1	24	1.00000	1/0.	/32	I 3	88.106	ма	2010	.442	I	4/0).28	
No	Name	Cum 36S	407	Ar /	36A	r		40ArA	Acc/g		370	Ca /	/ 39K	
1	Name 126-01c 0.80w 1	Cum 36S		Ar / 2.51			.45		Acc/g -0012	120.			/ 39K 388.700	m
			312		±			1.8E-	_		112	± 3		
1	126-01c 0.80w 1	0.00150	312 1455	2.51	± ±	184 1639 63	0.03 8.81	1.8E- 1.0E-	-0012	-114.	112	± 3 ± 1	388.700	m
1 2 3 4	126-01c 0.80w 1 126-02 0.90W 10	0.00150 0.00234	312 1455 932	2.51	± ± ±	184 1639 63	.03	1.8E- 1.0E- 1.9E-	-0012 -0012	-114. 125.	112	± 3 ± 1 ±	388.700 L76.554	m m
1 2 3	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10	0.00150 0.00234 0.01787	312 1455 932 697	2.51 5.62 2.60	± ± ±	184 1639 63 126 43	3.81 5.79 3.32	1.8E- 1.0E- 1.9E- 1.2E- 2.0E-	-0012 -0012 -0011 -0011	-114. 125. 128.	.112 .179 .695	± 3 ± 1 ±	388.700 176.554 22.519	m m m
1 2 3 4 5 6	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10	0.00150 0.00234 0.01787 0.02814	312 1455 932 697 930	2.51 5.62 2.60 7.73	± ± ± ±	184 1639 63 126 43	0.03 3.81 5.79	1.8E- 1.0E- 1.9E- 1.2E- 2.0E-	-0012 -0012 -0011 -0011	-114. 125. 128. 75.	.112 .179 .695 .204 .823	± 3 ± 1 ± ±	388.700 176.554 22.519 42.789	m m m
1 2 3 4 5	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10	0.00150 0.00234 0.01787 0.02814 0.04483	312 1455 932 697 930 863	2.51 5.62 2.60 7.73 0.77	± ± ± ±	184 1639 63 126 43	3.81 5.79 3.32	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E-	-0012 -0012 -0011 -0011	-114. 125. 128. 75.	.112 .179 .695 .204 .823	± 3 ± 1 ± ± ±	388.700 176.554 22.519 42.789 24.146	m m m m
1 2 3 4 5 6	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146	312 1455 932 697 930 863 2470	2.51 5.62 2.60 7.73 0.77 3.13	± ± ± ± ±	184 1639 63 126 43 93 135	0.03 3.81 5.79 3.32	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E-	-0012 -0012 -0011 -0011 -0011	-114. 125. 128. 75. 19. 82.	.112 .179 .695 .204 .823	± 3 ± 1 ± ± ± 1	388.700 176.554 22.519 42.789 24.146	m m m m m
1 2 3 4 5 6 7	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254	312 1455 932 697 930 863 2470 4379	2.51 5.62 2.60 7.73 0.77 3.13	± ± ± ± ±	184 1639 63 126 43 93 135	0.03 3.81 5.79 3.32 3.24 5.19	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E-	-0012 -0012 -0011 -0011 -0011 -0012	-114. 125. 128. 75. 19. 82.	.112 .179 .695 .204 .823 .705	± 3 ± 1 ± ± ± 1 ± 1	388.700 176.554 22.519 42.789 24.146 139.571 9.670	m m m m m m
1 2 3 4 5 6 7 8	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20w re 126-07 1.20w 45 126-08 1.20w 30 126-09 1.20w 13 126-10 3.0w 27-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727	312 1455 932 697 930 863 2470 4379	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 3.92	± ± ± ± ± ±	184 1639 63 126 43 93 135	0.03 3.81 5.79 3.32 3.24 5.19 07	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 1.7E-	-0012 -0012 -0011 -0011 -0011 -0012 -0012	-114. 125. 128. 75. 19. 82. 10. 97.	.112 .179 .695 .204 .823 .705 .115	± 3 ± 1 ± ± ± ± 1 ± ±	388.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498	m m m m m m
1 2 3 4 5 6 7 8 9	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45 126-08 1.20W 30 126-09 1.20W 13	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120	312 1455 932 697 930 863 2470 4379 5778	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 3.92	± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301	0.03 3.81 5.79 3.32 3.24 5.19 07	1.8E- 1.0E- 1.9E- 2.0E- 7.9E- 4.9E- 5.7E- 1.7E- 9.3E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0012	-114. 125. 128. 75. 19. 82. 10. 97.	.112 .179 .695 .204 .823 .705 .115 .445	± 3 ± 1 ± ± ± ± 1 ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413	m m m m m m m
1 2 3 4 5 6 7 8 9	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20w re 126-07 1.20w 45 126-08 1.20w 30 126-09 1.20w 13 126-10 3.0w 27-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876	312 1455 932 697 930 863 2470 4379 5778 35600	2.51 5.62 2.60 7.73 0.77 3.13 0.78 0.82 0.82 0.62 3.76	± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826	0.03 3.81 5.79 3.32 3.24 5.19 07 31 5.07 27	1.8E- 1.0E- 1.9E- 2.0E- 7.9E- 4.9E- 5.7E- 1.7E- 9.3E- 6.0E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0012 -0011	-114. 125. 128. 75. 19. 82. 10. 97. -29.	.112 .179 .695 .204 .823 .705 .115 .445 .013	± 3 ± 1 ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746	m m m m m m m
1 2 3 4 5 6 7 8 9 10	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45 126-08 1.20W 30 126-09 1.20W 13 126-10 3.0W 27- 126-11 4.0W 27-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888	312 1455 932 697 930 863 2470 4379 5778 35600 41368	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 3.92 0.62 3.76 0.21	± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681	3.81 5.79 5.32 5.24 5.19 07 31 5.07	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 1.7E- 9.3E- 6.0E- 6.9E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0012 -0011 -0011	-114. 125. 128. 75. 19. 82. 10. 97. -29. 79.	.112 .179 .695 .204 .823 .705 .115 .445 .000	± 3 ± 1 ± ± ± ± 1 ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953	m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20w re 126-07 1.20w 45 126-08 1.20w 30 126-09 1.20w 13 126-10 3.0w 27- 126-11 4.0W 27- 126-12 5.0W 27-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676	312 1455 932 697 930 863 2470 4379 5778 35600 41368 78450	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 9.82 9.62 3.76 0.21 3.89	± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681 8613	3.03 3.81 5.79 3.32 3.24 5.19 07 31 5.07 27 3.30 5.94	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 1.7E- 9.3E- 6.0E- 6.9E- 2.2E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0012 -0011 -0011	-114. 125. 128. 75. 19. 82. 10. 97. -29. 79. 33.	.112 .179 .695 .204 .823 .705 .115 .445 .013 .000 .927	± 3 ± 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691	m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20w re 126-07 1.20w 45 126-08 1.20w 30 126-09 1.20w 13 126-10 3.0w 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0w 28-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993	312 1455 932 697 930 863 2470 4379 5778 35600 41368 78450 33198	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 3.92 0.62 3.76 0.21 3.89 4.46	± ± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085	2.03 3.81 5.79 5.32 5.24 5.19 5.07 5.31 5.07 5.27 5.30 5.94 5.81	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 1.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.0E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0012 -0011 -0011 -0011	-114. 125. 128. 75. 19. 82. 10. 97. -29. 79. 33. 52. 43.	.112 .179 .695 .204 .823 .705 .115 .445 .013 .000 .927 .994 .534	± 3 ± 1 ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431	m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45 126-08 1.20W 30 126-09 1.20W 13 126-10 3.0W 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0W 28- 126-14 6.5W 28-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993 0.56676	312 1455 932 695 930 863 2470 4379 5778 35600 41368 78450 33198 66744	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 9.82 0.62 3.76 0.21 3.89 4.46 3.93	± ± ± ± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085	3.03 3.81 3.79 3.32 3.24 3.19 3.07 3.31 3.07 3.30 3.94 3.81 3.81 3.81	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.0E- 1.3E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0012 -0011 -0011 -0011 -0010	-114. 125. 128. 75. 19. 82. 10. 97. -29. 79. 33. 52. 43.	.112 .179 .695 .204 .823 .705 .115 .445 .013 .000 .927 .994 .534 .242	± 3 ± 1 ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431 12.467	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20w re 126-07 1.20w 45 126-08 1.20w 30 126-09 1.20w 13 126-10 3.0w 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0w 28- 126-14 6.5w 28- 126-15 7.0w 28-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993 0.56676 0.67538	312 1455 932 695 930 863 2470 4379 5778 35600 41368 78450 33198 66744 43183	2.51 5.62 2.60 7.73 3.77 3.13 0.78 9.82 9.82 9.62 3.76 0.21 3.89 4.46 3.93 5.81	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085 10424 5223	2.03 3.81 3.79 3.32 3.24 3.19 3.07 3.31 3.07 3.30 3.94 3.81 3.94 3.81 3.94 3.81 3.94 3.81 3.94 3.94 3.94 3.95	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.3E- 1.2E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0011 -0011 -0011 -0010 -0010	-114. 125. 128. 75. 19. 82. 10. 9729. 33. 52. 43. 51. 23.	.112 .179 .695 .204 .823 .705 .115 .445 .013 .000 .927 .994 .534 .242 .234	± 3 ± 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431 12.467 25.238	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45 126-08 1.20W 30 126-09 1.20W 13 126-10 3.0W 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0W 28- 126-14 6.5W 28- 126-15 7.0W 28- 126-16 8.0W 28-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993 0.56676 0.67538 0.77188	312 1455 932 695 930 863 2470 4379 5778 35600 41368 78450 33198 66744 43183 68445	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 9.82 9.62 3.76 0.21 3.89 4.46 3.93 5.81	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085 10424 5223 8555 35134	2.03 3.81 3.79 3.32 3.24 3.19 3.07 3.30 3.94 3.81 3.94 3.81 3.94 3.81 3.94 3.81	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.0E- 1.3E- 2.7E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0012 -0011 -0011 -0011 -0010 -0010	-114. 125. 128. 75. 19. 82. 10. 9729. 33. 52. 43. 51. 23.	.112 .179 .695 .204 .823 .705 .115 .445 .013 .000 .927 .994 .534 .242 .234 .747	± 3 ± 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431 12.467 25.238 13.980	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20w re 126-07 1.20w 45 126-08 1.20w 30 126-09 1.20w 13 126-10 3.0w 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0w 28- 126-14 6.5w 28- 126-15 7.0w 28- 126-16 8.0w 28- 126-16 8.0w 28-	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993 0.56676 0.67538 0.77188 0.79483	312 1455 932 695 930 863 2470 4379 5778 35600 41368 78450 33198 66744 43183 68445	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 9.82 9.62 3.76 0.21 3.89 4.46 3.93 5.81 9.88	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085 10424 5223 8555 35134	03 81 79 32 24 19 07 31 07 27 30 94 81 20 47 36 47	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.3E- 1.2E- 2.7E- 1.4E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0011 -0011 -0010 -0010 -0010	-114. 125. 128. 75. 19. 82. 10. 9729. 33. 52. 43. 51. 239.	112 179 695 204 823 705 115 445 013 000 927 994 534 242 234 747	± 3 ± 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431 12.467 25.238 13.980 32.067	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45 126-08 1.20W 30 126-09 1.20W 13 126-10 3.0W 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0W 28- 126-14 6.5W 28- 126-15 7.0W 28- 126-16 8.0W 28- 126-17 9.0W 28- 126-17 9.0W 28- 126-18 11.0W 28	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993 0.56676 0.67538 0.77188 0.79483 0.80677	312 1455 932 697 930 863 2470 4379 5778 35600 41368 78450 33198 66744 43183 68445 134473 265009	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 9.82 9.62 3.76 0.21 3.89 4.46 3.93 5.81 9.88 9.88	<pre>t t t t t t t t t t t t t t t t t t t</pre>	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085 10424 5223 8555 35134 60150	2.03 3.81 3.79 3.32 3.24 3.19 3.07 3.31 3.07 3.30 3.94 3.81 3.94 3.81 3.94 3.81	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.3E- 1.2E- 2.7E- 1.4E- 2.1E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0011 -0011 -0010 -0010 -0010 -0011	-114. 125. 128. 75. 19. 82. 10. 9729. 33. 52. 43. 51. 23. 29. 12.	.112 .179 .695 .204 .823 .705 .115 .445 .013 .000 .927 .994 .242 .234 .747 .446 .112	± 3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431 12.467 25.238 13.980 32.067 27.821	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45 126-08 1.20W 30 126-09 1.20W 13 126-10 3.0W 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0W 28- 126-14 6.5W 28- 126-15 7.0W 28- 126-16 8.0W 28- 126-17 9.0W 28- 126-18 11.0W 28 126-19 14.0W 28	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993 0.56676 0.67538 0.77188 0.79483 0.80677 0.82457	312 1455 932 695 930 863 2470 4379 5778 35600 41368 78450 33198 66744 43183 68445 134473 265009 143383	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 9.82 9.62 3.76 0.21 3.89 4.46 3.93 5.81 9.88 9.88	*	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085 10424 5223 8555 35134 60150 61258	03 81 79 32 24 19 07 31 07 27 30 94 81 20 47 36 51 83 83	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.3E- 1.2E- 2.7E- 1.4E- 2.1E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0011 -0011 -0010 -0010 -0010 -0011 -0011 -0011	-114. 125. 128. 75. 19. 82. 10. 9729. 33. 52. 43. 51. 239. 1244.	112 179 695 204 823 705 115 445 000 927 994 242 234 747 446 112 384	± 3 ± ± ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431 12.467 25.238 13.980 32.067 27.821 29.061	m m m m m m m m m m m m m m m m m m m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	126-01c 0.80w 1 126-02 0.90W 10 126-03 1.00W 10 126-04 1.10W 10 126-05 1.20W 10 126-06 1.20W re 126-07 1.20W 45 126-08 1.20W 30 126-09 1.20W 13 126-10 3.0W 27- 126-11 4.0W 27- 126-12 5.0W 27- 126-13 6.0W 28- 126-14 6.5W 28- 126-15 7.0W 28- 126-16 8.0W 28- 126-17 9.0W 28- 126-18 11.0W 28 126-19 14.0W 28 126-19 14.0W 28	0.00150 0.00234 0.01787 0.02814 0.04483 0.05146 0.09254 0.09727 0.11120 0.18876 0.23888 0.29676 0.47993 0.56676 0.67538 0.77188 0.79483 0.80677 0.82457 0.88092	312 1455 932 697 930 863 2470 4379 5778 35600 41368 78450 33198 66744 43183 68445 134473 265009 143383 20884	2.51 5.62 2.60 7.73 0.77 3.13 0.78 9.82 9.82 9.62 3.76 0.21 3.89 4.46 3.93 5.81 9.88 9.88	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	184 1639 63 126 43 93 135 731 301 2826 7681 8613 2085 10424 5223 8555 35134 60150 61258 1763 2120	03 81 79 32 24 19 07 31 07 27 30 94 81 20 47 36 51 83 83	1.8E- 1.0E- 1.9E- 1.2E- 2.0E- 7.9E- 4.9E- 5.7E- 9.3E- 6.0E- 6.9E- 2.2E- 1.3E- 1.2E- 2.7E- 1.4E- 2.1E- 6.7E-	-0012 -0012 -0011 -0011 -0011 -0012 -0011 -0011 -0011 -0010 -0010 -0010 -0011 -0011 -0011	-114. 125. 128. 75. 19. 82. 10. 9729. 33. 52. 43. 51. 239. 12441.	112 179 695 204 823 705 115 445 013 000 927 994 242 234 747 446 112 384 226	± 3 ± 1 ± ± ± 1 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	888.700 176.554 22.519 42.789 24.146 139.571 9.670 64.498 21.413 39.746 37.953 10.691 12.431 12.467 25.238 13.980 32.067 27.821 29.061 60.066	m m m m m m m m m m m m m m m m m m m

P23-126 HK7729 WR(rusty stain) Pat Sin L

No	Name	40Ar	* Vol ccNTP/g	Atm Cont	F1	F2
1	126-01c 0.80w 1	$0.10 \pm$	1.06 E-12 (1026.0%)	94.5573%	-8.6E-0005	1.6E-0004
2	126-02 0.90W 10	$3.95 \pm$	1.14 E-12 (28.9%)	20.3006%	8.1E-0005	-7.8E-0004
3	126-03 1.00W 10	$40.05 \pm$	1.74 E-12 (4.3%)	31.6858%	-9.0E-0005	5.8E-0004
4	126-04 1.10W 10	$16.72 \pm$	2.30 E-12 (13.8%)	42.3514%	-9.1E-0005	3.6E-0004
5	126-05 1.20W 10	$42.94 \pm$	1.54 E-12 (3.6%)	31.7478%	-5.4E-0005	2.8E-0004
6	126-06 1.20w re	$15.23 \pm$	0.87 E-12 (5.7%)	34.2358%	-1.4E-0005	1.4E-0005
7	126-07 1.20w 45	361.86 ±	11.95 E-12 (3.3%)	11.9598%	-5.9E-0005	3.6E-0004
8	126-08 1.20w 30	$78.19 \pm$	1.13 E-12 (1.4%)	6.7469%	-7.5E-0006	2.8E-0005
9	126-09 1.20w 13	$309.30 \pm$	2.04 E-12 (0.7%)	5.1134%	-6.9E-0005	3.2E-0004
10	126-10 3.0w 27-	$11.09 \pm$	0.07 E -9 (0.6%)	0.8300%	2.1E-0005	-2.5E-0004
11	126-11 4.0W 27-	$8.34 \pm$	0.04 E -9 (0.5%)	0.7143%	-5.7E-0005	7.8E-0004
12	126-12 5.0W 27-	$18.32 \pm$	0.12 E -9 (0.6%)	0.3767%	-2.4E-0005	8.1E-0004
13	126-13 6.0w 28-	$24.40 \pm$	0.17 E -9 (0.7%)	0.8901%	-3.7E-0005	8.2E-0004
14	126-14 6.5w 28-	$23.36 \pm$	0.17 E -9 (0.7%)	0.4427%	-3.1E-0005	1.5E-0003
15	126-15 7.0w 28-	$18.86 \pm$	0.13 E -9 (0.7%)	0.6843%	-3.7E-0005	8.9E-0004
16	126-16 8.0w 28-	$26.63 \pm$	0.17 E -9 (0.6%)	0.4317%	-1.7E-0005	7.0E-0004
17	126-17 9.0W 28-	$12.46 \pm$	0.07 E -9 (0.6%)	0.2197%	-1.7E-0006	9.3E-0005
18	126-18 11.0W 28	$12.80 \pm$	0.07 E -9 (0.5%)	0.1115%	6.5E-0006	-6.7E-0004
19	126-19 14.0W 28	$10.31 \pm$	0.05 E -9 (0.5%)	0.2061%	-8.8E-0006	4.8E-0004
20	126-20 18.0W 28	$4.70 \pm$	0.02 E -9 (0.5%)	1.4149%	3.2E-0005	-2.1E-0004
21	126-21 10.0W, n	$452.93 \pm$	6.90 E-12 (1.5%)	-4.8011%	1.1E-0003	3.0E-0003
22	126-22 naerbe 1	$746.64 \pm$	10.36 E-12 (1.4%)	17.9396%	3.6E-0004	2.6E-0004

Integrated Results:

```
Age = 62.057 ± 0.682 Ma

40Ar* / 39K = 708.836 ± 5.735

Total 39K Vol = 2.4454E-0010 ccNTP/g

Total 40Ar* Vol = 1.733 ± 0.004 E-7

(40Ar / 36Ar)sam = 43105.70 ± 1426.81

Total Atm 40Ar Vol = 1.1965E-0009 ccNTP/g

(36Ar / 40Ar)sam = 0.00002320 ±0.00000108
(37Ar / 40Ar)sam = 0.00004272 ±0.00000922
(39Ar / 40Ar)sam = 0.00140109 ±0.00001110

Corr 36/40 & 39/40 ratios =-0.015141
Corr 36/40 & 37/40 ratios =-0.002937
Corr 37/40 & 39/40 ratios = 0.000520

37Ca / 39K = 3.049 ± 0.659 E-2

Mass = 1.000 g

F1 = -2.175 E-5
```

P23-137 HK12086 fd

NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar = 286.97)

No	Name	Temp	Cum 39K		Age	4	0Ar* /	39K
1	137-01 0.20w 20	1	0.00309	12.474	± 13.508	Ma 140	.526 ±	152.71
2	137-02 0.20w 20	2	0.00439	20.794	± 39.973	Ma 234	.802 \pm	453.98
3	137-04 0.25w 20	5	0.00682	21.328	± 19.545	Ma 240	.868 ±	222.04
4	137-04 0.30w 20	6	0.01829	31.375	± 6.424	Ma 355	.331 \pm	73.39
5	137-05 0.30w re	7	0.02310	34.613	± 16.062	Ma 392	.350 \pm	183.83
6	137-06 0.50w 21	10	0.06365	52.694			$.325 \pm$	36.10
7	137-07 0.60w 21	11	0.12686	64.067	± 3.198	Ma 732	.201 \pm	37.20
8	137-08 0.80w 21	12	0.32403	65.620	± 1.307	Ma 750	.280 \pm	15.22
9	137-09 1.00w 21	13	0.49597	54.194	± 2.035	Ma 617	.667 \pm	23.54
10	137-10 1.20w 21	14	0.56165	73.236			.137 \pm	
11	137-11 1.40W 21	15	0.64299	80.825	± 2.788	Ma 928	$.055 \pm$	32.74
12	137-12 1.60W 22	16	0.69298	78.237	± 2.362	Ma 897	$.695 \pm$	27.70
13	137-13 1.80W 22	17	0.74309	77.464	± 3.206	Ma 888	.631 \pm	37.57
14	137-14 2.20W 22	18	0.79386	82.145	± 3.007	Ma 943	$.560 \pm$	35.33
15	137-15 2.60W 22	19	0.83070	74.620	± 3.771	Ma 855	$.332 \pm$	44.12
16	137-16 3.00w 23	20	0.85019	74.882	± 8.653	Ma 858	$.391 \pm$	101.27
17	137-17 5.00w 23	21	0.89503	80.999	± 2.715	Ma 930	.096 ±	31.89
18	137-18 10w 23-S	22	1.00000	181.871	± 3.660	Ma 2148	$.343 \pm$	45.45
Mo	Nama	C11m 26C	407	m / 267a	_	40727224		2702 / 2017
No	Name	Cum 36S		r / 36Aı		40ArAcc/g		37Ca / 39K
1	137-01 0.20w 20	0.02358	324	.98 ±	30.03	9.8E-0012	1.8	48 ± 2.194
1 2	137-01 0.20w 20 137-02 0.20w 20	0.02358 0.03714	324 331	.98 ± .37 ±	30.03 54.77	9.8E-0012 5.6E-0012	1.8 -5.7	48 ± 2.194 51 ± 9.398
1 2 3	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20	0.02358 0.03714 0.04071	324 331 558	.98 ± .37 ± .05 ±	30.03 54.77 379.29	9.8E-0012 5.6E-0012 1.5E-0012	1.8 -5.7 -3.3	48 ± 2.194 51 ± 9.398 41 ± 4.284
1 2 3 4	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20	0.02358 0.03714 0.04071 0.06647	324 331 558 548	.98 ± .37 ± .05 ± .64 ±	30.03 54.77 379.29 41.61	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011	1.8 -5.7 -3.3 310.9	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m
1 2 3 4 5	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re	0.02358 0.03714 0.04071 0.06647 0.07587	324 331 558 548 616	.98 ± .37 ± .05 ± .64 ± .47 ±	30.03 54.77 379.29 41.61 134.10	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012	1.8 -5.7 -3.3 310.9 -1.7	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788
1 2 3 4 5 6	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388	324 331 558 548 616 966	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ±	30.03 54.77 379.29 41.61 134.10 23.61	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011	1.8 -5.7 -3.3 310.9 -1.7 707.7	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m
1 2 3 4 5 6 7	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140	324 331 558 548 616 966 1853	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ± .61 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m
1 2 3 4 5 6 7 8	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365	324 331 558 548 616 966 1853 1959	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ± .61 ± .07 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 5.9E-0011	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m
1 2 3 4 5 6 7 8	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530	324 331 558 548 616 966 1853 1959	.98 ± .37 ± .05 ± .64 ± .47 ± .61 ± .07 ± .62 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 5.9E-0011 1.7E-0011	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m
1 2 3 4 5 6 7 8 9	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21 137-10 1.20w 21	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468	324 331 558 548 616 966 1853 1959 4374	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ± .61 ± .07 ± .62 ± .27 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 5.9E-0011 1.7E-0011 3.9E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171
1 2 3 4 5 6 7 8 9 10	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21 137-10 1.20w 21 137-11 1.40W 21	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468 0.38553	324 331 558 548 616 966 1853 1959 4374 9692	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ± .61 ± .07 ± .62 ± .27 ± .07 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37 2019.01	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 5.9E-0011 1.7E-0011 3.9E-0012 4.5E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1 2.5	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171 78 ± 0.130
1 2 3 4 5 6 7 8 9 10 11	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21 137-10 1.20w 21 137-11 1.40W 21 137-12 1.60W 22	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468 0.38553 0.39711	324 331 558 548 616 966 1853 1959 4374 9692 11422 6496	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ± .61 ± .07 ± .62 ± .27 ± .07 ± .11 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37 2019.01 1239.16	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 5.9E-0011 1.7E-0011 3.9E-0012 4.5E-0012 4.8E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1 2.5 2.5	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171 78 ± 0.130 57 ± 0.182
1 2 3 4 5 6 7 8 9 10 11 12 13	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21 137-10 1.20w 21 137-11 1.40W 21 137-12 1.60W 22 137-13 1.80W 22	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468 0.38553 0.39711 0.40481	324 331 558 548 616 966 1853 1959 4374 9692 11422 6496	.98 ± .37 ± .05 ± .64 ± .72 ± .61 ± .07 ± .62 ± .27 ± .07 ± .11 ± .21 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37 2019.01 1239.16 2825.98	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 5.9E-0011 1.7E-0011 3.9E-0012 4.5E-0012 4.8E-0012 3.2E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1 2.5 2.5	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171 78 ± 0.130 57 ± 0.182 95 ± 0.213
1 2 3 4 5 6 7 8 9 10 11 12 13 14	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21 137-10 1.20w 21 137-11 1.40W 21 137-12 1.60W 22 137-13 1.80W 22 137-14 2.20W 22	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468 0.38553 0.39711 0.40481 0.41206	324 331 558 548 616 966 1853 1959 4374 9692 11422 6496 9545	.98 ± .37 ± .05 ± .64 ± .72 ± .61 ± .07 ± .62 ± .27 ± .11 ± .21 ± .00 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37 2019.01 1239.16 2825.98 3428.93	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 1.7E-0011 3.9E-0012 4.5E-0012 4.8E-0012 3.2E-0012 3.0E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1 2.5 2.5 1.7 -0.0	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171 78 ± 0.130 57 ± 0.182 95 ± 0.213 34 ± 129.411 m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21 137-10 1.20w 21 137-11 1.40W 21 137-12 1.60W 22 137-13 1.80W 22 137-14 2.20W 22 137-15 2.60W 22	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468 0.38553 0.39711 0.40481 0.41206 0.42447	324 331 558 548 616 966 1853 1959 4374 9692 11422 6496 9545 10861 4357	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ± .61 ± .07 ± .62 ± .27 ± .11 ± .21 ± .00 ± .79 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37 2019.01 1239.16 2825.98 3428.93 696.73	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 1.7E-0011 3.9E-0012 4.5E-0012 4.8E-0012 3.2E-0012 3.0E-0012 5.2E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1 2.5 2.5 1.7 -0.0 155.9	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171 78 ± 0.130 57 ± 0.182 95 ± 0.213 34 ± 129.411 m 22 ± 191.391 m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-09 1.00w 21 137-10 1.20w 21 137-11 1.40W 21 137-12 1.60W 22 137-13 1.80W 22 137-14 2.20W 22 137-15 2.60W 22 137-16 3.00w 23	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468 0.38553 0.39711 0.40481 0.41206 0.42447 0.42987	324 331 558 548 616 966 1853 1959 4374 9692 11422 6496 9545 10861 4357 5247	.98 ± .37 ± .05 ± .64 ± .72 ± .61 ± .07 ± .62 ± .27 ± .11 ± .21 ± .00 ± .79 ± .70 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37 2019.01 1239.16 2825.98 3428.93 696.73 1822.94	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 1.7E-0011 3.9E-0012 4.5E-0012 4.8E-0012 3.2E-0012 3.0E-0012 5.2E-0012 2.2E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1 2.5 2.5 1.7 -0.0 155.9	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171 78 ± 0.130 57 ± 0.182 95 ± 0.213 34 ± 129.411 m 22 ± 191.391 m 16 ± 0.432
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	137-01 0.20w 20 137-02 0.20w 20 137-04 0.25w 20 137-04 0.30w 20 137-05 0.30w re 137-06 0.50w 21 137-07 0.60w 21 137-08 0.80w 21 137-09 1.00w 21 137-10 1.20w 21 137-11 1.40W 21 137-12 1.60W 22 137-13 1.80W 22 137-14 2.20W 22 137-15 2.60W 22	0.02358 0.03714 0.04071 0.06647 0.07587 0.13388 0.18140 0.32365 0.36530 0.37468 0.38553 0.39711 0.40481 0.41206 0.42447	324 331 558 548 616 966 1853 1959 4374 9692 11422 6496 9545 10861 4357 5247 2889	.98 ± .37 ± .05 ± .64 ± .47 ± .72 ± .61 ± .07 ± .62 ± .27 ± .11 ± .21 ± .00 ± .79 ±	30.03 54.77 379.29 41.61 134.10 23.61 81.21 32.54 339.07 1669.37 2019.01 1239.16 2825.98 3428.93 696.73	9.8E-0012 5.6E-0012 1.5E-0012 1.1E-0011 3.9E-0012 2.4E-0011 2.0E-0011 1.7E-0011 3.9E-0012 4.5E-0012 4.8E-0012 3.2E-0012 3.0E-0012 5.2E-0012	1.8 -5.7 -3.3 310.9 -1.7 707.7 346.7 341.6 706.6 1.1 2.5 2.5 1.7 -0.0 155.9	48 ± 2.194 51 ± 9.398 41 ± 4.284 80 ± 602.261 m 12 ± 1.788 46 ± 200.031 m 74 ± 114.139 m 44 ± 41.404 m 95 ± 61.452 m 00 ± 0.171 78 ± 0.130 57 ± 0.182 95 ± 0.213 34 ± 129.411 m 22 ± 191.391 m 16 ± 0.432 65 ± 267.989 m

P23-137 HK12086 fd

No	Name	2		40)Aı	r* Vol d	CCNTP	/g			Atm Cont	F1	F2
1	137-01	0.20w	20	978.76	±	906.99	E-15	(92.7%)	90.9289%	-1.3E-0003	-1.2E-0003
2	137-02	0.20w	20	684.87	±	928.38	E-15	(135.6%)	89.1765%	4.1E-0003	3.9E-0003
3	137-04	0.25w	20	1.32	±	1.01	E-12	(76.4%)	52.9524%	2.4E-0003	1.4E-0003
4	137-04	0.30w	20	9.18	±	0.82	E-12	(8.9%)	53.8602%	-2.2E-0004	-1.6E-0004
5	137-05	0.30w	re	4.25	±	0.85	E-12	(19.9%)	47.9341%	1.2E-0003	8.3E-0004
6	137-06	0.50w	21	54.83	±	0.66	E-12	(1.2%)	30.5672%	-5.0E-0004	-2.8E-0004
7	137-07	0.60w	21	104.26	±	1.03	E-12	(1.0%)	15.9419%	-2.5E-0004	-4.1E-0005
8	137-08	0.80w	21	333.24	±	1.95	E-12	(0.6%)	15.0837%	-2.4E-0004	-3.2E-0005
9	137-09	1.00w	21	239.23	±	1.84	E-12	(0.8%)	6.7549%	-5.0E-0004	8.0E-0004
10	137-10	1.20w	21	124.15	±	0.95	E-12	(0.8%)	3.0488%	-7.8E-0004	2.6E-0003
11	137-11	1.40W	21	170.05	±	1.23	E-12	(0.7%)	2.5871%	-1.8E-0003	6.7E-0003
12	137-12	1.60W	22	101.09	±	1.07	E-12	(1.1%)	4.5489%	-1.8E-0003	3.1E-0003
13	137-13	1.80W	22	100.31	±	1.11	E-12	(1.1%)	3.0958%	-1.3E-0003	3.9E-0003
14	137-14	2.20W	22	107.91	±	1.13	E-12	(1.1%)	2.7207%	2.4E-0008	-8.1E-0008
15	137-15	2.60W	22	70.97	±	0.90	E-12	(1.3%)	6.7810%	-1.1E-0004	9.6E-0005
16	137-16	3.00w	23	37.69	±	0.82	E-12	(2.2%)	5.6310%	-7.3E-0004	9.1E-0004
17	137-17	5.00w	23	93.96	±	0.94	E-12	(1.0%)	10.2273%	-4.5E-0004	4.2E-0005
18	137-18	10w 23	3-S	507.98	±	2.85	E-12	(0.6%)	30.8415%	-2.5E-0004	-2.2E-0004

Integrated Results:

```
Age = 79.748 \pm 1.098 \text{ Ma}
40Ar* / 39K = 915.414 \pm 10.781
                                               Total 39K Vol = 2.2526E-0012 ccNTP/g
                                                Total 40Ar* Vol = 2.062 \pm 0.005 E-9
(40Ar / 36Ar)sam = 1759.86 \pm 16.40
                                               Total Atm 40Ar Vol = 4.1612E-0010 ccNTP/g
(36Ar / 40Ar)sam = 0.00056823 \pm 0.00000689
                                              Corr 36/40 & 39/40 ratios =-0.085678
(37Ar / 40Ar)sam = 0.00074066 \pm 0.00003220
                                              Corr 36/40 & 37/40 ratios =-0.024150
(39Ar / 40Ar)sam = 0.00090898 \pm 0.00001054
                                              Corr 37/40 \& 39/40 \text{ ratios} = 0.002845
37Ca / 39K = 8.148 \pm 0.366 E-1
                                               Mass = 1.000 g
F1 = -5.812 E-4
                                               F2 = -2.170 E-4
```

P23 HK12078 Rambler Channel Fault: 146 M

NewAge 981201 AgeParams 990623 Cd liner (Fractionation relative to 40Ar/36Ar = 286.97)

37 -	37			G 2.075			7			103+	/ 2015	
No	Name	2 3	Temp	Cum 39K	07 605		Age	3.6 -		40Ar* /		
1	p23-06 ms	3-Au	1	0.02066	87.627					8.080 ±		65.46
2	p23-08 ms	3-Au	2	0.02846	84.924		37.116			6.239 ±		36.79
3	p23-22 ms	3-Au	3	0.04510	74.221		12.919			0.662 ±		51.13
4	-	3-Aug	4	0.15916	44.188		2.060			2.230 ±		23.70
5	-	5-Au	5	0.17959	77.910		8.095			3.857		94.90
6	-	5-Au	6	0.19786	66.455		9.305			0.008		08.39
7	-	5-Aug	7	0.23067	77.266		6.278			6.309 ±		73.57
8	p23-23 l	5-Aug	8	0.29460	77.523	3 ±	3.857	Ma	88	9.328 ±	Ė	45.21
9	p23-38 l	5-Aug	9	0.38893	84.878	3 ±	2.800	Ma	97	5.705 ±	t	32.95
No	Name		Cum 36S	40A	r / 36 <i>I</i>	Ar		40	ArAcc/g		37Ca	/ 39K
1	p23-06 ms	3-Au	0.03790	691	.04 ±		24.59	2.	4E-0011	-195.3	370 ±	198.589 m
2	p23-08 ms	3-Au	0.07432	446	.10 ±		18.64	2.	3E-0011	-145.7	739 ±	475.696 m
3	p23-22 ms	3-Au	0.09333	831	.43 ±		77.52	1.	2E-0011	-323.2	253 ±	231.656 m
4	p23-21 m	3-Aug	0.15278	989	.23 ±		24.65	3.	8E-0011	77.2	$228 \pm $	38.815 m
5	p23-36 ms	5-Au	0.19585	600	.89 ±		20.47	2.	8E-0011	22.7	759 ±	199.471 m
6	p23-25 ms	5-Au	0.21553	803	.12 ±		53.06	1.	3E-0011	-96.5	542 ±	266.677 m
7	p23-24 m	5-Aug	0.25683	802	.59 ±		26.18	2.	6E-0011	16.7	774 ±	165.201 m
8	p23-23 1	5-Aug	0.31646	981	.94 ±		20.90	3.	8E-0011	39.8	360 ±	80.130 m
9	p23-38 1	5-Aug	0.40008	1087	.96 ±		13.26	5.	3E-0011	92.0)36 ±	34.802 m
No	Name		40Ar*	Vol ccN	TP/g			Atm	Cont	F1		F2
1	p23-06 ms	3-Au	$32.45 \pm$	0.87 E-3	12 (2.7	웅)	42	2.7615%	1.4E-	-0004	1.2E-0004
2	p23-08 ms	3-Au	$11.87 \pm$	0.97 E-3	12 (8.2	웅)	66	.2410%	1.0E-	-0004	9.8E-0005
3	p23-22 ms	3-Au	$22.06 \pm$	1.14 E-	12 (5.2	웅)	35	5.5412%	2.3E-	-0004	1.7E-0004
4	p23-21 m	3-Aug	89.28 ±	1.07 E-3	12 (1.2		29	.8717%	-5.5E-	-0005	-2.5E-0005
5	_	5-Au	$28.47 \pm$	0.95 E-	12 (3.3	용)	49	1770%	-1.6E-	-0005	-1.4E-0005
6	p23-25 ms			0.84 E-	,	3.9	. ,		5.7940%	6.9E-		
7	_	5-Aug	45.33 ±	0.89 E-3	•	2.0	,		5.8183%	-1.2E-		
8	-	5-Aug	88.61 ±	0.93 E-3	•	1.0	,		.0935%	-2.8E-		
9	-	_	143.45 ±	0.98 E-1	•	0.7	,		1.1610%	-6.6E-		
	P23 30 I	5 1149	110.10 -	0.70 E .	١ ،	5.7	• ,	۱ ک	. 10100	0.06	3003	1.50 000

Integrated Results:

Age = $75.569 \pm 1.315 \text{ Ma}$

 $40Ar* / 39K = 866.431 \pm 13.867$ Total 39K Vol = 1.5585E-0012 ccNTP/g

Total $40Ar* Vol = 1.350 \pm 0.005 E-9$

 $(40Ar / 36Ar)sam = 919.31 \pm 6.62$ Total Atm 40Ar Vol = 6.3966E-0010 ccNTP/g

 $37Ca / 39K = 2.914 \pm 2.340 E-2$ Mass = 1.000 g

F1 = -2.078 E-5 F2 = -1.492 E-5

GEO PUBLICATIONS AND ORDERING INFORMATION

十力工程處刊物及訂購資料

A selected list of major GEO publications is given in the next page. An up-to-date full list of GEO publications can be found at the CEDD Website http://www.cedd.gov.hk on the Internet under "Publications". Abstracts for the documents can also be found at the same website. Technical Guidance Notes are published on the CEDD Website from time to time to provide updates to GEO publications prior to their next revision.

部份土力工程處的主要刊物目錄刊載於下頁。而詳盡及最新的 土力工程處刊物目錄,則登載於土木工程拓展署的互聯網網頁 http://www.cedd.gov.hk 的"刊物"版面之內。刊物的摘要及更新 刊物內容的工程技術指引,亦可在這個網址找到。

Copies of GEO publications (except maps and other publications which are free of charge) can be purchased either by:

writing to

Publications Sales Section. Information Services Department, Room 402, 4th Floor, Murray Building, Garden Road, Central, Hong Kong. Fax: (852) 2598 7482

- Calling the Publications Sales Section of Information Services Department (ISD) at (852) 2537 1910
- Visiting the online Government Bookstore at http://bookstore.esdlife.com
- Downloading the order form from the ISD website at http://www.isd.gov.hk and submit the order online or by fax to
- Placing order with ISD by e-mail at puborder@isd.gov.hk

1:100 000, 1:20 000 and 1:5 000 maps can be purchased from:

Map Publications Centre/HK, Survey & Mapping Office, Lands Department, 23th Floor, North Point Government Offices, 333 Java Road, North Point, Hong Kong. Tel: 2231 3187

Fax: (852) 2116 0774

Requests for copies of Geological Survey Sheet Reports, publications and maps which are free of charge should be sent

For Geological Survey Sheet Reports and maps which are free of

Chief Geotechnical Engineer/Planning,

(Attn: Hong Kong Geological Survey Section)

Geotechnical Engineering Office,

Civil Engineering and Development Department,

Civil Engineering and Development Building,

101 Princess Margaret Road,

Homantin, Kowloon, Hong Kong.

Tel: (852) 2762 5380 Fax: (852) 2714 0247 E-mail: jsewell@cedd.gov.hk

For other publications which are free of charge:

Chief Geotechnical Engineer/Standards and Testing,

Geotechnical Engineering Office,

Civil Engineering and Development Department,

Civil Engineering and Development Building,

101 Princess Margaret Road,

Homantin, Kowloon, Hong Kong.

Tel: (852) 2762 5346

Fax: (852) 2714 0275

E-mail: wmcheung@cedd.gov.hk

讀者可採用以下方法購買土力工程處刊物(地質圖及免費刊物

書面訂購

香港中環花園道 美利大廈4樓402室 政府新聞處 刊物銷售組 傳真: (852) 2598 7482

- 致電政府新聞處刊物銷售小組訂購 (電話: (852) 2537 1910)
- 進入網上「政府書店」選購,網址爲 http://bookstore.esdlife.com
- 透過政府新聞處的網站 (http://www.isd.gov.hk) 於網上遞 交訂購表格,或將表格傳真至刊物銷售小組 (傳真:(852) 2523 7195)
- 以電郵方式訂購 (電郵地址:puborder@isd.gov.hk)

讀者可於下列地點購買1:100 000, 1:20 000及1:5 000地質圖:

香港北角渣華道333號 北角政府合署23樓 地政總署測繪處 電話: 2231 3187 傳真: (852) 2116 0774

如欲索取地質調查報告、其他免費刊物及地質圖,請致函:

地質調查報告及地質圖:

香港九龍何文田公主道101號

土木工程拓展署大樓

土木工程拓展署

土力工程處

規劃部總土力工程師

(請交:香港地質調查組)

電話: (852) 2762 5380

傳真: (852) 2714 0247

電子郵件: jsewell@cedd.gov.hk

其他免費刊物:

香港九龍何文田公主道101號

土木工程拓展署大樓

土木工程拓展署

土力工程處

標準及測試部總土力工程師

電話: (852) 2762 5346

傳真: (852) 2714 0275

電子郵件: wmcheung@cedd.gov.hk

MAJOR GEOTECHNICAL ENGINEERING OFFICE PUBLICATIONS 土力工程處之主要刊物

GEOTECHNICAL MANUALS

Geotechnical Manual for Slopes, 2nd Edition (1984), 300 p. (English Version), (Reprinted, 2000).

斜坡岩土工程手冊(1998),308頁(1984年英文版的中文譯本)。

Highway Slope Manual (2000), 114 p.

GEOGUIDES

Geoguide 1	Guide to Retaining Wall Design, 2nd Edition (1993), 258 p. (Reprinted, 2000).
Geoguide 2	Guide to Site Investigation (1987), 359 p. (Reprinted, 2000).
Geoguide 3	Guide to Rock and Soil Descriptions (1988), 186 p. (Reprinted, 2000).
Geoguide 4	Guide to Cavern Engineering (1992), 148 p. (Reprinted, 1998).
Geoguide 5	Guide to Slope Maintenance, 3rd Edition (2003), 132 p. (English Version).
岩土指南第五冊	斜坡維修指南,第三版(2003),120頁(中文版)。
Geoguide 6	Guide to Reinforced Fill Structure and Slope Design (2002), 236 p.

GEOSPECS

Geospec 1	Model Specification for Prestressed Ground Anchors, 2nd Edition (1989), 164 p. (Reprinted,

1997).

Geospec 3 Model Specification for Soil Testing (2001), 340 p.

GEO PUBLICATIONS

GCO Publication No. 1/90	Review of Design Methods for Excavations (1990), 187 p. (Reprinted, 2002).
GEO Publication No. 1/93	Review of Granular and Geotextile Filters (1993), 141 p.
GEO Publication No. 1/2000	Technical Guidelines on Landscape Treatment and Bio-engineering for Man-made Slopes and Retaining Walls (2000), 146 p.
GEO Publication No. 1/2006	Foundation Design and Construction (2006), 376 p.

GEOLOGICAL PUBLICATIONS

The Quaternary Geology of Hong Kong, by J.A. Fyfe, R. Shaw, S.D.G. Campbell, K.W. Lai & P.A. Kirk (2000), 210 p. plus 6 maps.

The Pre-Quaternary Geology of Hong Kong, by R.J. Sewell, S.D.G. Campbell, C.J.N. Fletcher, K.W. Lai & P.A. Kirk (2000), 181 p. plus 4 maps.

TECHNICAL GUIDANCE NOTES

TGN 1 Technical Guidance Documents