Review of Engineering Geological Aspects of Hong Kong West Drainage Tunnel

GEO Report No. 372

K.L.H. Lo

Geotechnical Engineering Office Civil Engineering and Development Department The Government of the Hong Kong Special Administrative Region [Blank Page]

Review of Engineering Geological Aspects of Hong Kong West Drainage Tunnel

GEO Report No. 372

K.L.H. Lo

This report was originally produced in January 2022 as GEO Geological Report No. GR 1/2022 $^{\odot}$ The Government of the Hong Kong Special Administrative Region

First published, February, 2024

Prepared by:

Geotechnical Engineering Office, Civil Engineering and Development Department, Civil Engineering and Development Building, 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong.

Preface

In keeping with our policy of releasing information which may be of general interest to the geotechnical profession and the public, we make available selected internal reports in a series of publications termed the GEO Report series. The GEO Reports can be downloaded from the website of the Civil Engineering and Development Department (http://www.cedd.gov.hk) on the Internet.

Chaphi M_

Raymond W M Cheung Head, Geotechnical Engineering Office February 2024

Foreword

This report presents the findings from the review of engineering geological aspects of Hong Kong West Drainage Tunnel. The objective of the study is to compare and contrast the pre-construction and post-construction engineering geological models of the tunnel.

This study was carried out by Mr Kevin L.H. Lo of the Hong Kong Geological Survey of the Planning Division. It has been reviewed by Dr Denise L.K. Tang.

Jeffrey C F Wong Chief Geotechnical Engineer/Planning

Abstract

Tunnel mapping records are invaluable resources for geotechnical practitioners as these records provide a factual account of the subsurface ground conditions along the tunnels. Hong Kong West Drainage Tunnel traverses from Tai Hang to Cyberport, crossing crosses different rock formations, eight major faults as well as subsidiary faults, shear zones and contact zones in the western part of Hong Kong Island. The consultants' design models and the contractor's as-built tunnel mapping records of the project have been reviewed to evaluate the ground model along the tunnel alignment in detail. Review of geological conditions, including lithology, major faults, minor faults, photolineaments, joints as well as the rock mass quality and groundwater conditions of the main tunnel were conducted.

				Page No.
Titl	e Page			1
Pret	face			3
For	eword			4
Abs	stract			5
1100				
Cor	ntents			6
List	of Table	S		8
List	of Figur	es		9
1.	Introdu	iction		10
	1.1	Object	ives of this Study	10
	1.2	Projec	t Background	10
	1.3	Site G	eology	11
2.	Pre-Co	nstructio	on and Post-Construction Geological Model	14
	2.1	Overvi	iew	14
	2.2	Litholo	ogy	14
		2.2.1	Portion 1 (CH 0 – 4000)	18
		2.2.2	Portion 2 (CH 4000 – 6860)	19
		2.2.3	Portion 3 (CH 6860 – 7550)	19
		2.2.4	Portion 4 (CH 7550 – 9058)	20
		2.2.5	Portion 5 (CH 9058 – 10013)	21
		2.2.6	Portion 6 (CH 10013 – 10187)	21
		2.2.7	Portion 7 (CH 10187 – 10583)	21
	2.3	Structu	ural Geology	22
		2.3.1	Overview	22
		2.3.2	Faults	22
		2.3.3	Photolineaments	27
		2.3.4	Joints	27
			2.3.4.1 Portion 1 (CH 0 – 4000)	30

Page No.

			2.3.4.2 2.3.4.3 2.3.4.4 2.3.4.5 2.3.4.6 2.3.4.7	Portion 2 (CH 4000 – 6860) Portion 3 (CH 6860 – 7550) Portion 4 (CH 7550 – 9058) Portion 5 (CH 9058 – 10013) Portion 6 (CH 10013 – 10187) Portion 7 (CH 10187 – 10583)	30 30 32 32 32 32 32
	2.4	Engine	ering Geolo	gical Properties	34
		2.4.1	Rock Mas	ss Quality	34
			2.4.1.1 2.4.1.2 2.4.1.3 2.4.1.4 2.4.1.5 2.4.1.6 2.4.1.7	Portion 1 (CH 0 – 4000) Portion 2 (CH 4000 – 6860) Portion 3 (CH 6860 – 7550) Portion 4 (CH 7550 – 9058) Portion 5 (CH 9058 – 10013) Portion 6 (CH 10013 – 10187) Portion 7 (CH 10187 – 10583)	35 36 36 36 37 37 37
		2.4.2	Groundwa	ater Conditions	37
			2.4.2.1 2.4.2.2 2.4.2.3 2.4.2.4 2.4.2.5 2.4.2.6 2.4.2.7	Portion 1 (CH 0 – 4000) Portion 2 (CH 4000 – 6860) Portion 3 (CH 6860 – 7550) Portion 4 (CH 7550 – 9058) Portion 5 (CH 9058 – 10013) Portion 6 (CH 10013 – 10187) Portion 7 (CH 10187 – 10583)	 39 39 39 39 40 40 40
3.	Discuss	ion			40
	3.1	Summa	ry of Findi	ngs	40
	3.2	Limitat	ions of this	Study	41
4.	Conclus	sions			42
5.	Referen	ces			42
Appendix A: Summary of Engineering Geological Data			eering Geological Data	43	
Appe	endix B:	Summa	ry of Rock	Discontinuity Data	60
Appe	endix C:	Summary of Probing Records			75
Appendix D:		Revised Geological Sections			84

List of Tables

Table No.		Page No.
2.1	Summary of Predicted Lithologies along the Main Tunnel (after Arup, 2007)	14
2.2	Summary of Actual Lithologies along the Main Tunnel (after DNJV, 2011)	15
2.3	Summary of Anticipated Geological Structures along the Main Tunnel (after Arup, 2007)	23
2.4	Extent of Different Geological Structures along the Main Tunnel (after Arup, 2007)	24
2.5	Summary of Adverse Geological Features Encountered along the Main Tunnel (after DNJV, 2011)	24
2.6	Summary of Major Discontinuity Sets for Hong Kong West Drainage Tunnel (after Arup, 2007)	28
2.7	Summary of Rock Joint Data Recorded along the Main Tunnel (after DNJV, 2011)	31
2.8	Classification of Rock Rating Classes Based on Q-value (after Barton et al, 1974; Arup, 2007)	34
2.9	Summary of Distribution of Predicted Q-value of the Main Tunnel (after Arup, 2007)	34
2.10	Summary of Distribution of Actual Q-value of the Main Tunnel (after DNJV, 2011)	35
3.1	Summary of Geological Contacts between Granite and Tuff along the Main Tunnel (after Arup, 2007; DNJV, 2011)	41

List of Figures

Figure No.		Page No.
1.1	General Layout of Hong Kong West Drainage Tunnel	12
1.2	Geological Map of Hong Kong West Drainage Tunnel (after GEO, 2012)	13
2.1	Predicted Lithologies along the Main Tunnel (after Arup, 2007; GEO, 2012)	16
2.2	Actual Lithologies along the Main Tunnel as Shown in the As-built Records (after DNJV, 2011; GEO, 2012)	17
2.3	Distribution of Rock Weathering Grade along the Main Tunnel (after DNJV, 2011)	18
2.4	Granite Stringers (in Yellow Polygons) Close to the Contact between Granite and Tuff near Victoria Gap, Hong Kong (Drillhole No. 43775/TP4, Box 31)	20
2.5	Hornfels (with Spots) Close to the Contact between Granite and Tuff near Victoria Peak, Hong Kong (Drillhole No. 43774/MA14, Box 7)	20
2.6	Geological Structures and Features as Predicted in the Pre-Construction Model and as Shown in the As-built Records along the Main Tunnel (after Arup, 2007; DNJV, 2011)	25
2.7	Distribution of Numbers of Major Joint Sets along the Main Tunnel (after DNJV, 2011)	29
2.8	Number of Major Joint Sets along the Main Tunnel (after DNJV, 2011)	29
2.9	Stereoplots Based on the Rock Joint Data from the As-built Records of the Main Tunnel	33
2.10	Distribution of Predicted and Actual Q-values along the Main Tunnel (after Arup, 2007; DNJV, 2011)	36
2.11	Distribution of Groundwater Inflow along the Main Tunnel (after DNJV, 2011)	38
2.12	Groundwater Inflow from Probing along the Main Tunnel (after DNJV, 2011)	39

1 Introduction

1.1 Objectives of this Study

Tunnelling works form an integral part of infrastructure development in Hong Kong. Prior to construction, sufficient site investigations, adequate characterisation of ground conditions and timely recognition of adverse geological features are indispensable in managing geotechnical risk of a tunnelling project. During construction, subsurface ground conditions encountered along the tunnel are carefully mapped and recorded. These tunnel mapping records provide a factual account of the ground conditions which will serve as an invaluable resource for geotechnical practitioners for future infrastructure development.

The objective of this review study is to compare and contrast the pre-construction and post-construction engineering geological models of the main tunnel of Hong Kong West Drainage Tunnel (HKWDT; Figure 1.1). The drainage tunnel traverses from Tai Hang to Cyberport, crossing different rock formations, eight major faults as well as subsidiary faults, shear zones and contact zones in the western part of Hong Kong Island. The consultants' design models and the contractor's as-built tunnel mapping records of the project have been reviewed to evaluate the ground model along the tunnel alignment in detail.

1.2 Project Background

Hong Kong West Drainage Tunnel (HKWDT) consists of a 10.7-km main drainage tunnel (hereafter main tunnel) traversing from Tai Hang to Cyberport, 34 intakes and around 8-km long adits connecting the intakes with the drainage tunnel. The drainage tunnel intercepts stormwater collected from the upper catchment at the Mid-Levels area and discharge into the sea directly. The invert levels of the tunnel ranges from +3.44 mPD near Cyberport to +47.97 mPD near Tai Hang. The HKWDT project was commenced in November 2009 and completed in August 2012. The Drainage Services Department (DSD) was the Client for the project. Ove Arup and Partners Hong Kong Limited and Dragages-Nishimatsu Joint Venture (DNJV) were the design consultants and contractor for the project, respectively.

Under Agreement No. CE 17/2005 (DS) – "Design and Construction of Hong Kong West Drainage Tunnel", a Geotechnical Interpretation Report (Arup, 2007) was prepared by Project's design consultant. This report presented a detailed pre-construction geological/engineering geological model for the tunnel project, based on desk study data and site-specific ground investigation data (i.e. 57 vertical drillholes, 16 inclined drillholes, 1 horizontal drillhole and associated field/laboratory tests). At the subsequent construction stage, tunnel face mapping at varying intervals ranging from 5-90 m were conducted by the contractor. The geological data was then summarized into as-built geological long sections (DNJV, 2011) of the tunnel alignment.

The main tunnel was constructed by two hard rock Tunnel Boring Machines (TBM) with excavation diameters of 7.2 m for the eastern TBM and 8.2 m for the western TBM. The horizontal adits connected to the main tunnel were excavated by drill and blast method. The 34 intake structures that were used to collect and convey stormwater were constructed in the form of dropshafts primarily by raise boring method (23 nos.) as well as reverse circulation drilling and mechanical excavation for the remaining intakes.

1.3 Site Geology

According to the 1:20,000-scale geological map Sheet 11 (GCO, 1986; GEO, 2012), the main tunnel traverses from fine-grained granite and fine- to medium-grained granite of the Mount Butler Granite at around CH 0 - 3300, medium-grained granite of the Kowloon Granite at around CH 3300 - 3750, fine ash vitric tuff of the Ap Lei Chau Formation at around CH 3750 - 7900, coarse ash crystal tuff of the Mount Davis Formation at around CH 7900 - 8800, fine ash vitric tuff and eutaxitic fine ash vitric tuff of the Ap Lei Chau Formation at CH 8800 - 9800, fine-grained granite of the Mount Butler Granite at around CH 9800 - 10000, and to coarse ash crystal tuff and eutaxitic crystal-bearing fine ash vitric tuff at around CH 10000 - 10700 (Figure 1.2). A band of tuffaceous sedimentary rock of the Mount Davis Formation was mapped at approximately CH 8700. The tuffs at approximately CH 6550 -CH 7500 are inferred to have been affected by contact metamorphism, based on earlier studies by Strange & Shaw (1986).

The major structural features along the main tunnel are dominated by faults, photolineaments, and a series of folds. Five persistent faults, two of which trend northwest, two of which trend northeast and one of which trends north, intersect the main tunnel at different orientations. A northeast-trending fault is in close proximity to the main tunnel alignment at around CH 8450 - 8950. Four photolineaments, of varying orientations, intercept the main tunnel at different locations (i.e. CH 1850, CH 3300, CH 5700 and CH 6300). The volcanic strata beneath High West and Victoria Peak were folded into a series of anticlines and synclines, but the fold axes do not intercept with the main tunnel alignment as shown in the published geological maps.

The Quaternary superficial deposits cover the low-lying areas. Colluvium commonly occurs along valleys, drainage lines as well as the Mid-levels Area (at around CH 7750 - 8500). However, with the exception of the portal areas, the main tunnel was largely situated within rock at depths well below the soil/rock interface with a rock cover of 100 m or greater (Arup, 2007).

Figure 1.1 General Layout of Hong Kong West Drainage Tunnel

Figure 1.2 Geological Map of Hong Kong West Drainage Tunnel (after GEO, 2012)

2.1 Overview

The aim of this section is to present the pre-construction and post-construction geological models of the HKWDT project, based on the information presented in the Geotechnical Interpretation Report (Arup, 2007) prepared by Project's design consultant and the contractor's as-built geological long sections (DNJV, 2011) of the tunnel alignment submitted by the Project's contractor. The geological conditions, including lithology, major faults, minor faults, photolineaments, joints as well as the rock mass quality and groundwater conditions of the main tunnel will be discussed.

2.2 Lithology

The geological conditions along the main tunnel are discussed in seven portions, based on distribution of rock types. Tables 2.1 and 2.2 summarise the predicted and actual lithologies along the main tunnel, respectively. The distribution of predicted and actual lithologies along the main tunnel are shown in Figures 2.1 and 2.2. No mapping records were retrieved at CH 10583 – 10700 of the main tunnel.

Chainage (m)	Predicted Rock Type to be Encountered along Main Tunnel	
CH 0 – 130	Fine-grained granite	
CH 130 – 830	Fine- to medium-grained granite	
CH 830 – 4100	Medium-grained granite	
CH 4100 – 6350	Fine ash vitric tuff	
CH 6350 – 6700	Fine ash vitric tuff with lenses of coarse ash tuff and metamorphosed tuff at geological contacts	
CH 6700 – 6900	Fine-grained granite	
CH 6900 – 7100	Fine- to medium-grained granite	
CH 7100 – 7150	Medium-grained granite	
CH 7150 – 7450	Fine- to medium-grained granite	
CH 7450 – 7770	Fine-grained granite	
CH 7770 – 8050	Metamorphosed coarse ash tuff	
CH 8050 – 8450	Fine ash vitric tuff	
CH 8450 – 8900	Coarse ash tuff	
CH 8900 – 9300	Fine ash vitric tuff	
CH 9300 – 9600	Metamorphosed fine ash tuff	
СН 9600 – 10100	Fine-grained granite	
CH 10100 – 10450	Metamorphosed fine ash tuff	
СН 10450 – 10700	Coarse ash tuff	

 Table 2.1
 Summary of Predicted Lithologies along the Main Tunnel (after Arup, 2007)

Portion No.	Chainage (m)	Actual Rock Type along Main Tunnel	Rock Unit(s)
	CH 0 – 1600	Fine- to medium-grained granite	
1	CH 1600 – 1800	Medium- to coarse-grained granite	Mount Butler Granite
	CH 1800 – 4000	Medium-grained granite	
2	CH 4000 – 6725	Fine ash tuff	An Lai Chan Farmation
Z	СН 6725 – 6860	Coarse ash tuff	Ap Lei Chau Formation
	CH 6860 – 7000	Granite	
3	CH 7000 – 7400	Medium-grained granite	Kowloon Granite
5	CH 7400 – 7550	Fine- to medium-grained granite	
	СН 7550 – 7800	Coarse ash tuff	
4	CH 7800 – 9058	Fine ash tuff and coarse ash tuff (occasionally lapilli-bearing)	Mount Davis Formation
5	CH 9058 – 10013	Fine-grained granite (locally medium-grained granite)	Kowloon Granite
6	CH 10013 – 10187	Granite and tuff (contact zone)	Kowloon Granite and Mount Davis Formation
7	CH 10187 – 10400	Fine ash tuff	Mount Davis Formation
/	СН 10400 – 10583	Coarse ash tuff	

 Table 2.2
 Summary of Actual Lithologies along the Main Tunnel (after DNJV, 2011)

Figure 2.1 Predicted Lithologies along the Main Tunnel (after Arup, 2007; GEO, 2012)

Figure 2.2 Actual Lithologies along the Main Tunnel as Shown in the As-built Records (after DNJV, 2011; GEO, 2012)

In addition, the contractor recorded the rock weathering grades, which is summarised in Figure 2.3. Grade I/II rocks were encountered in nearly half of the length of the main tunnel, followed by approximately 37% of length of main tunnel in Grade I.

Figure 2.3 Distribution of Rock Weathering Grade along the Main Tunnel (after DNJV, 2011)

2.2.1 Portion 1 (CH 0 – 4000)

Granites were firstly encountered in the eastern portion of the main tunnel from Tai Hang to Mount Cameron. Arup (2007) predicted that granites would be encountered at CH 0 - 4100. The grain sizes of granite varied from fine-grained (CH 0 - 130), to fine- to medium-grained (CH 130 - 830) and to medium-grained (CH 830 - 4100). The boundaries between granite of different grain sizes were inferred based on site-specific ground investigation data. Pegmatite veins/dykes that were anticipated along the main tunnel. The colour of granites was not described in the consultant's geotechnical report.

During construction stage, fine- to medium-grained granite (CH 0 - 1600), medium- to coarse-grained granite (CH 1600 - 1800) and medium-grained granite (CH 1800 - 4000) were encountered in the first 4000 metres of the main tunnel as documented in the as-built geological sections by DNJV (2011). The color of granites was described as light grey to pinkish grey, spotted black and occasionally pinkish orange. Pegmatite veins and mafic dykes were observed at approximately CH 601 - 792. However, their exact location, extent and orientation were not recorded. The contractor assigned the granites at CH 0 - 4000 as the Mount Butler Granite (Klb) of the Lion Rock Suite.

2.2.2 Portion 2 (CH 4000 – 6860)

Portion 2 of the main tunnel passed through volcanic rocks from Mount Cameron to Victoria Gap. Arup (2007) predicted that volcanic rocks, predominantly fine ash vitric tuff would be encountered at CH 4100-6700. Bands of coarse ash crystal tuff and eutaxite might occasionally present at CH 6350-6700. It was expected that the first contact between granite and tuff would be encountered beneath Mount Cameron at around CH 4100, where the tuffs were inferred to have been metamorphosed. In addition, granite intrusions, described as "pervasive stringers of granite", and minor quartzphyric rhyolite might be encountered in the central portion of the main tunnel.

A sharp geological contact between medium-grained granite and volcanic rocks intersected the main tunnel at CH 4000, but the orientation was not recorded (DNJV, 2011). The location of the first geological contact encountered along the main tunnel was approximately 100 m to the east, compared to the pre-construction geological model presented by Arup (2007). The contractor gave a more detailed description on the rock type along the main tunnel. Fine ash tuff was encountered at CH 4015 – 6725, while coarse ash tuff was encountered at CH 6725 – 6860. The volcanic rocks were assigned to the Ap Lei Chau Formation (Kra) of the Repulse Bay Volcanic Group. The contractor did not record any sign of metamorphism in the volcanic rocks. Several fine-grained granite intrusions were encountered at CH 6632, CH 6643, CH 6704 and CH 6761. A pegmatite intrusion was encountered at CH 6856. However, owing to the simplicity of the contractor's geological sections, most of the extent/orientation of the intrusions were not recorded. No quartzphyric rhyolite dyke was encountered in this area, as opposed to the pre-construction geological model.

2.2.3 Portion 3 (CH 6860 – 7550)

The western portion of the main tunnel passed through granites and volcanic rocks from Victoria Gap to Cyberport, where the geology was more complex comparing to the eastern and central portions of the main tunnel. Arup (2007) anticipated that the second lithological contact between granite and tuff, of similar conditions described at CH 4000, would be encountered in the vicinity of Victoria Gap at around CH 6700. Based on existing GI records and the information collected from Mid-levels Study (GCO, 1982), the geological contact was inferred to be complex, irregular in shape and include stringers and zones of inter-fingering of granite and tuff (Figure 2.4). In terms of grain size, Arup (2007) assumed the granites beneath Victoria Peak were folded in the form of an antiform, where grain size gradually increases towards the core of the fold. Alternating "layers" of fine-grained granite, fine- to medium-grained granite and medium-grained granite were inferred at CH 6700 – 7770.

The geological contact between granite and tuff was encountered at around CH 6860 (orientation not specified) where a pegmatite intrusion was also recorded. The actual location of the second geological contact was approximately 160 m to the west, compared to the pre-construction geological model presented by Arup (2007). Granite (grain size not specified) was encountered at CH 6860 – 7000, followed by medium-grained granite at CH 7000 – 7400 and fine- to medium-grained granite at CH 7400 – 7550, in which the variation in grain size in granite was different from the predictions by Arup (2007). The granitic rocks were assigned to the Kowloon Granite (Klk) of the Lion Rock Suite.

Figure 2.4 Granite Stringers (in Yellow Polygons) Close to the Contact between Granite and Tuff near Victoria Gap, Hong Kong (Drillhole No. 43775/TP4, Box 31)

2.2.4 Portion 4 (CH 7550 – 9058)

Arup (2007) anticipated that the main tunnel would encounter the third geological contact between granite and tuff beneath Victoria Peak at around CH 7770, and eventually passed into fine ash vitric tuff. The tuffs between CH 7770 and CH 9960 were inferred to have been altered by thermal metamorphism and hornfels might be encountered for several hundred metres away from the geological contact between granite and tuff (Figure 2.5). Fine ash vitric tuff was expected at CH 8050 – 8450 and at CH 8900 – 9300. Coarse ash tuff was expected between CH 8450 and CH 8900.

Figure 2.5 Hornfels (with spots) Close to the Contact between Granite and Tuff near Victoria Peak, Hong Kong (Drillhole No. 43774/MA14, Box 7)

An approximately 50 m-wide contact zone, was encountered at CH 7550 (DNJV, 2011), which was around 220 m to the east, compared to the pre-construction geological model presented by Arup (2007). Coarse ash tuff, fine- to medium-grained granite and an aplite vein were recorded within the contact zone. Four more aplite veins (CH 7655, CH 7698, CH 7731 and CH 7753) and one coarse-grained granite intrusion (CH 7718) were encountered within 150 m of the contact zone. The volcanic rocks were described as coarse ash tuff at CH 7600 – 7800, and as fine and coarse ash tuff with occasional lapilli lithic clasts at CH 7800 – 9058. No sign of metamorphism was recorded in the volcanic rocks.

2.2.5 Portion 5 (CH 9058 – 10013)

Arup (2007) predicted that the fourth geological contact between granite and tuff in between Pok Fu Lam and High West at approximately CH 9600. Based on available ground investigation data, the contact was unlikely to be sharp and numerous stringers of granite could be expected within the volcanic rocks (Arup, 2007). It was anticipated that fine-grained granite would be encountered at CH 9600 – 10100. Subordinate quartzphyric rhyolite dykes might be encountered along the main tunnel alignment.

According to the as-built records, the geological contact was displaced approximately 500 m to the east at CH 9058 compared with the pre-construction model (DNJV, 2011). Fine-grained granite was encountered at CH 9058 – 10013. Subordinate medium-grained granite was locally observed between CH 9200 and CH 9400. Quartz and pegmatite veins were observed between CH 9400 and CH 9600. "Dark grey plutonic dykes", possibly mafic dykes, were encountered at CH 9830 to CH 9760.

2.2.6 Portion 6 (CH 10013 – 10187)

Arup (2007) suggested that the main tunnel would encounter the geological contact between granite and tuff in Pok Fu Lam at around CH 10100. They assumed that fine ash tuff would be encountered at CH 10100 - 10450, followed by coarse ash tuff at CH 10450 - 10700. Fine ash tuff adjacent to the contact was inferred to have been metamorphosed and numerous stringers of granite could be expected within the tuff. Based on contractor's as-built geological sections (DNJV, 2011), the lithological contact was not clearly defined such that the contact zone was about 174 m wide, given both fine-grained granite and fine to coarse ash tuff were encountered between CH 10013 and CH 10187.

2.2.7 Portion 7 (CH 10187 – 10583)

Fine ash tuff was encountered at CH 10187 - 10400, whereas coarse ash tuff was encountered at CH 10400 - 10583 of the main tunnel. The contractor did not record any sign of metamorphism in the volcanic rocks. Granite and/or pegmatite veins were observed between CH 10200 and CH 10583, which was similar to the pre-construction geological model by Arup (2007).

2.3 Structural Geology

2.3.1 Overview

In the consultant's geotechnical interpretation report (Arup, 2007), eight major faults, three minor faults and seventeen photolineaments were inferred based on desk study, API and site-specific ground investigation data (Table 2.3). Arup (2007) attempted to estimate the extent of different structural geological features, in which the terminologies "Fault Transition Zone" and "Main Fault Zone" were used in their report. To avoid confusion, the above terminologies were modified to "Transition Zone" and "Main Influence Zone", respectively in this report (Table 2.4).

In the contractor's as-built geological sections (DNJV, 2011), "shear zone", "fault zone", "fault breccia", "fault gouge", "highly fractured rock mass", "shear zone with highly fractured rock mass" were the terminologies used qualitatively for describing the major weakness zones encountered along the main tunnel. The extent, orientation and nature of the geological structures were not recorded. Table 2.5 summarises the weakness zones encountered along main tunnel. The distribution of weakness zones, together with the inferred geological structures by Arup (2007) are shown in Figure 2.6.

2.3.2 Faults

Detailed assessment of eight major faults was conducted by Arup (2007) such that their predicted position, orientation, nature and extent (i.e. main influence zone and disturbed zone) were documented in the consultant's report. The right major faults are shown in Figure 2.6.

The NW-trending Tai Tam Fault was characterised by fractured zones, fault breccia with slickensided joint surfaces (Arup, 2007). The fault strikes at 135-140° and dips at 80-85°. The fault was anticipated to be 2-5 m wide, with an influence zone of 70-85 m wide at CH 645 (Arup, 2007). According to the as-built record (DNJV, 2011), weakness zone was not mapped, but the contractor recorded a significant drop in Q-value (i.e. from 15.83-0.56) at CH 651.

The NW-trending Wong Nai Chung Gap Fault was characterised by two distinct fault bands comprised fault breccia, chlorite-coated and kaolin-infilled slickensided joints (Arup, 2007). The two fault bands had a similar strike (140-145°) and dip angle (80-85°). It was anticipated the fault zone was 1-6 m in width and the thickness of the disturbed zone ranged from 35-52 m at CH 2130 (Arup, 2007). During tunnel construction, localised highly-decomposed granite and fault breccia were encountered in between CH 2090 and CH 2130 (DNJV, 2011).

The NE-trending Middle Gap Fault was characterised by minor brittle fault features, chlorite-coated and kaolin-infilled joints (Arup, 2007). The fault strikes at $010-030^{\circ}$ and dips at 70° to 80°. It was anticipated that the fault was 1-4 m in width and the thickness of the disturbed zone ranged from 130-135 m at CH 3270 (Arup, 2007). No weakness zones, which might be associated with the Middle Gap Fault, were recorded in the contractor's geological sections (DNJV, 2011).

Predicted Chainage (m)	Geological Structure	Trend (Relation to the tunnel)
CH 215	Photolineament	E (Oblique)
CH 645	Tai Tam Fault	NW (Oblique)
CH 1850	Photolineament	NW (Perpendicular)
CH 2130	Wong Nai Chung Gap Fault	NW (Perpendicular)
CH 2420	Photolineament	N (Perpendicular)
CH 2690	Photolineament	N (Oblique)
CH 3130	Photolineament	NE (Perpendicular)
CH 3220	Photolineament	N (Oblique)
CH 3270	Middle Gap Fault	NE (Perpendicular)
CH 3540	Minor Fault	N (Oblique)
CH 4540	Wanchai Gap Fault	NE (Perpendicular)
CH 5080	Magazine Gap Fault	NW (Oblique)
CH 5215	Photolineament	N (Perpendicular)
CH 5260	Photolineament	NW (Oblique)
CH 5590	Photolineament	NW (Oblique)
СН 5730	Photolineament	NW (Oblique)
СН 5920	Photolineament	N (Perpendicular)
СН 6420	Minor Fault	NW (Oblique)
СН 6570	Victoria Gap Fault	NE (Perpendicular)
СН 6730	Photolineament	NE (Perpendicular)
СН 7050	Photolineament	NE (Perpendicular)
СН 7530	Photolineament	NW (Oblique)
CH 7810	Photolineament	N (Perpendicular)
CH 8360	Sandy Bay Fault	NE (Sub-parallel)
CH 8960	Sandy Bay Fault	NE (Sub-parallel)
CH 9800	Photolineament	N (Oblique)
СН 9950	Photolineament	N (Oblique)
CH 10160	Telegraph Bay Fault	N (Oblique)
CH 10360	Minor Fault	N (Oblique)

Table 2.3Summary of Anticipated Geological Structures along the Main Tunnel
(after Arup, 2007)

Type of Structure	Width of Main Influence Zone ⁽¹⁾ (m)	Width of Transition Zone ⁽²⁾ (m)
Major Fault	5 - 30	10 - 150
Minor Fault	1 - 5	5 - 50
Photolineament	0.5 - 3	2 - 10
Notes:(1) Renamed from(2) Renamed from	n "Main Fault Zone". n "Fault Transition Zone".	

Table 2.4Extent of Different Geological Structures along the Main Tunnel
(after Arup, 2007)

Table 2.5 Summary of Adverse Geological Features Encountered along the Main Tunnel (after DNJV, 2011)

Chainage (m) Adverse Geological Feature		Width (m)
CH 946	Shear zone	Not recorded
CH 982	Fault zone	Not recorded
СН 2092 – 2127	Fault breccia	35 m
CH 2220	Shear zone	Not recorded
CH 4364	Highly fractured rock mass	Not recorded
СН 5254 – 5873	Highly fractured rock mass	619 m
СН 6523	Highly fractured rock mass	Not recorded
СН 6633 – 6644	Highly fractured rock mass	11 m
CH 8319	Shear zone	Not recorded
CH 8834	Shear zone	Not recorded
CH 8994	Fault breccia, fault gouge	Not recorded
CH 9000 – 9071 Shear zone		71 m
CH 9343 – 9487	CH 9343 – 9487 Shear zone	
CH 9508	Fault gouge	Not recorded
CH 9511	CH 9511 Fault zone	
CH 9514 – 9580	CH 9514 – 9580 Shear zone	
CH 9550	Fault zone	Not recorded
CH 9616 – 10583 Shear zone with highly fractured rock mass		967 m

Figure 2.6 Geological Structures and Features as Predicted in the Pre-Construction Model and as Shown in the As-built Records along the Main Tunnel (after Arup, 2007; DNJV, 2011)

The NE-trending Wanchai Gap Fault was categorised as an extensive and regional fault, which comprised discrete zones of fault breccia and mafic dykes with microfractures, slickensided and chlorite-coated joints (Arup, 2007). The fault strikes at 028-032° and dips at 65-75°. It was anticipated that the fault was 25-35 m in width and the thickness of the disturbed zone ranged from 120-140 m at CH 4540 (Arup, 2007). However, no weakness zones nor significant drop in Q-value, which might be indicative of the Wanchai Gap Fault were recorded in the contractor's geological sections (DNJV, 2011).

The NW-trending Magazine Gap Fault was characterised by a number of discrete fault zones, shear zones and fault breccia (Arup, 2007). Narrow bands of fault gouge and foliated tuff were inferred, based on ground investigation data (Arup, 2007). The fault strikes at 150-160° and dips at 80-90°. It was anticipated that the fault was 5-15 m in width and the thickness of the disturbed zone ranged from 90-110 m at CH 5080 (Arup, 2007). However, no weakness zones nor significant drop in Q-value, which might be indicative of the Magazine Gap Fault, were recorded in the contractor's geological sections (DNJV, 2011).

The NE-trending Victoria Gap Fault was characterised by brittle features including fault breccia and slickensided joints (Arup, 2007). The fault strikes at 045-055° and dips at 75-90°. It was anticipated that the fault was 1-5 m in width and the thickness of the disturbed zone ranged from 115-135 m at CH 6570 (Arup, 2007). No weakness zones nor significant drop in Q-value were recorded in the contractor's geological sections (DNJV, 2011).

The NE-trending Sandy Bay Fault was categorised as a persistent, regional geological structure, which comprised variable geological conditions ranging from closely-spaced slickensided joints to shear zones of intense chlorite and kaolin-coated joints, hydrothermally altered rocks, fault gouge and fault breccia (Arup, 2007). Despite the fault did not intersect the main tunnel, it posed a significant risk as it ran sub-parallel to the main tunnel alignment. The fault strikes at 235-245° and dips at 70-80°. It was anticipated that the fault was 1-2 m in width and the thickness of the disturbed zone ranged from 130-135 m (Arup, 2007). It was estimated that the main tunnel at CH 8360 and CH 8960 would be closer to the fault in comparison to the other parts of the tunnel. During tunnel construction, no weakness zones nor significant drop in Q-value were recorded near CH 8360. However, poor rock mass conditions, including fault breccia, fault gouge, and shear zones were encountered at CH 8994 – CH 9071 (DNJV, 2011). The calculated Q-value dropped to 0.03 the lowest at CH 9000 and with groundwater inflow of 100L/min at CH 9083 prior to pre-excavation grouting.

The N-S-trending Telegraph Bay Fault was characterised by both ductile and brittle features, which comprised mylonite and fault breccia, slickensided joints (Arup, 2007). Quartz veins and chloritised granites were also recorded. The fault strikes at 173-179° and dips at 70-75°. It was anticipated that the fault was 2-6 m in width and the thickness of the disturbed zone ranged from 95-105 m at CH 10160 (Arup, 2007). The main tunnel encountered poor rock mass conditions from CH 9343 to CH 10583 (DNJV, 2011). Shear zone with highly-fractured rock mass were recorded in the contractor's geological long sections. The average Q-value for this region was 1.58 and it dropped to 0.03 the lowest at CH 10135.

Three minor faults were anticipated at CH 3540, CH 6420 and CH 10360, respectively (Figure 2.6; Arup, 2007). The first two faults were shown in the published 1:20,000-scale geological map (GCO, 1986), while the latter fault was inferred by Arup (2007), based on aerial photograph interpretation. The degree of disturbance of the minor faults on the main tunnel

were inferred to be less extensive in comparison to the Major Faults. In reality, no weakness zones nor significant drop in Q-value were recorded near CH 3540 and CH 6420 (DNJV, 2011). On the other hand, poor rock mass conditions were encountered near CH 10360, in which "shear zone with highly fractured rock mass" were recorded in the contractor's geological long sections, which might relate to the Telegraph Bay Fault.

2.3.3 Photolineaments

Seventeen photolineaments were identified based on desk study and API by Arup (2007) (Figure 2.6). Eleven out of the 17 photolineaments at CH 215, CH 1850, CH 2420, CH 2690, CH 3130, CH 3220, CH 5920, CH 6730, CH 7050, CH 7530, and CH 7810 had minimal effect on the rock mass quality along the main tunnel.

Four photolineaments were inferred at CH 5215, CH 5260, CH 5590 and CH 5730 (Figure 2.6; Arup, 2007). Highly-fractured rock mass was recorded at CH 5254 to CH 5873 with a total length of 619 m (DNJV, 2011), where the four photolineaments were anticipated. Significant groundwater inflow (i.e. up to 150L/min) was recorded at CH 5602. The average Q-value for this region was 2.19 and it dropped to 0.89 the lowest at CH 5509.

The two remaining photolineaments were inferred at CH 9800 and CH 9950 (Figure 2.6; Arup, 2007). "Shear zone with highly fractured rock mass" was recorded in the contractor's geological long sections, which might be related to the Telegraph Bay Fault (DNJV, 2011).

2.3.4 Joints

Arup (2007) carried out rock joint assessment based on acoustic televiewer surveys from the project-specific drillholes as well as mapping of surface exposures at rock slopes in close proximity to the main tunnel alignment. The rock joint data is shown in five location plans with stereoplots and a summary table in Appendix B. Arup (2007) attempted to summarise the rock joint data by lithologies, which are divided into six portions as shown in Table 2.6.

The contractor recorded the rock discontinuity data during construction by mapping at either cutter head or telescopic opening. In the as-built geological long sections, the number of joint sets was recorded at each individual mapping record. The orientation of discontinuities (each with a given range) was summarised at 100-m intervals, whereas description of rock joint properties, including joint spacing, aperture, waviness and nature of infilling were summarised at 200-m intervals.

The number of joint sets for each round of mapping along main tunnel is summarised in Figure 2.7. In most cases, two to four major joint sets (574 nos.) were recorded during the excavation, which account for 90% of the records. Rock masses with zero set (11 nos.) and one set (32 nos.) of joint were also encountered along main tunnel and in very few extreme cases, up to six to seven major joint sets were recorded in the contractor's geological long sections (DNJV, 2011).

Chainage (m)	Rock Type	Dip/Dip Direction (°)
		82/041
		72/056
CH 0 – 4100	Granite	72/204
		73/352
		4/053
		67/214
CU 4100 6700	Tuff	71/280
CH 4100 – 6700	Tull	79/314
		24/021
		61/229
		89/347
CH 6700 – 7700	Granite	47/301
		16/072
		30/302
		70/060
		59/189
CH 7700 0(00	T. (?)	38/243
CH //00 – 9600	Ium	40/301
		62/307
		12/360
		78/178
CH 0(00 10100	Creatite	78/267
СП 9000 — 10100	Granite	32/251
		32/331
		54/026
CH 10100 – 10700	Tuff	74/244
		74/313

Table 2.6Summary of Major Discontinuity Sets for Hong Kong West Drainage Tunnel
(after Arup, 2007)

Figure 2.7 Distribution of Numbers of Major Joint Sets along the Main Tunnel (after DNJV, 2011)

Based on the distribution of lithologies and weakness zones as stated in the above, the relationship between the number of major joint sets, rock type and/or weakness zones is evaluated as shown in Figure 2.8. It is evident that the number of major joint sets observed within the volcanic rocks were higher than those within the granitic rocks, which may imply that the volcanic rocks were more fractured than the granite along the main tunnel. In addition, it is noted that the number of major joint sets were relatively higher along weakness zones. However, the relationship was not conclusive and did not tie in with all weakness zones.

Figure 2.8 Number of Major Joint Sets along the Main Tunnel (after DNJV, 2011)

Joint infilling in the granitic rocks comprised a wide variety of materials. Three groups namely "clay", "non-clay" and "staining" were defined in the analysis of the joint data. "Clay" minerals include kaolin and chlorite. "Non-clay" minerals include quartz and calcite. "Staining" includes iron oxide and manganese oxide stained. The rock joint data is subsequently plotted on stereonets by using the computer software "DIPS" as shown in Figure 2.9. Table 2.7 summarises the interpreted major joint sets encountered at the seven portions of the main tunnel.

2.3.4.1 Portion 1 (CH 0 – 4000)

Arup (2007) predicted four sub-vertical joint sets and one sub-horizontal joint set at CH 0 – 4100. In reality, four sub-vertical joint sets (J1-J4) were interpreted at Portion 1 (Figure 2.9). Major joint sets J1 (ESE-WNW trending) and J3 (NNE-SSW trending) were more prominent within the portion and they formed an orthogonal pair at a dihedral angle of around 90°. Joint spacing was generally described as "closely to widely spaced". Aperture of joints were mostly described as "tight to extremely narrow". In terms of nature of infilling, rock joints in 50% of the length of portion were stained, 45% with "non-clay" infilling and 5% with "clay" infilling.

2.3.4.2 Portion 2 (CH 4000 – 6860)

Arup (2007) predicted three sub-vertical joint sets and one sub-horizontal joint set at CH 4100 – 6700. In reality, four sub-vertical joint sets (J1-J4) and one sub-horizontal joint set (J5) were interpreted at Portion 2 (Figure 2.9). Major joint sets J3 (NE-SW trending) and J4 (ENE-SWS trending) were more prominent within the portion and they formed a conjugate pair at a dihedral angle of 30° . Within the portion, the spacing and aperture of the joints were described as "closely to medium spaced" and "tight to extremely narrow", respectively. In terms of nature of infilling, rock joints in 71% of the length of portion were stained, 12% with "non-clay" infilling and 17% with "clay" infilling.

2.3.4.3 Portion 3 (CH 6860 – 7550)

Arup (2007) predicted three sub-vertical joint sets and two sub-horizontal joint sets at CH 6860 – 7550. In reality, five sub-vertical joint sets (J1-J5), one gently-dipping joint set (J7) and one sub-horizontal joint (J6) set were interpreted (Figure 2.9). Major joint sets J1 (ESE-SWS trending) and J2 (NW-SE trending) were more prominent among other joint sets within the portion and they formed a conjugate pair at dihedral angle of around 30° . Joint spacing was described as either "closely to medium spaced" or "medium to widely spaced" within the portion, each accounted for 50% of the length of the portion. Joint aperture was described as "tight to extremely narrow". Rock joints within the portion were stained, but no infilling was recorded.

Portion No.	Chainage (m)	Rock Type	Major Joint Set	Dip/Dip Direction (°)
			J1a; J1b	83/202; 82/020
1			J2a; J2b	82/257; 83/069
I	CH 0 – 4000	Granite	J3a; J3b	75/294; 87/109
			J4	82/326
			J1a; J1b	82/206; 80/019
			J2a; J2b	82/261; 82/079
2	CH 4000 – 6860	Tuff	J3a; J3b	82/311; 81/168
			J4a; J4b	83/342; 82/172
			J5	19/208
			J1a; J1b	83/208; 86/026
			J2a; J2b	77/234; 86/055
			J3a; J3b	83/323; 83/144
3	CH 6860 – 7550	Granite	J4	66/355
			J5	82/113
			J6	19/202
			J7	36/039
	CH 7550 – 9058		J1a; J1b	82/216; 81/042
		Tuff	J2a; J2b	75/253; 85/073
4			J3a; J3b	82/307; 80/132
			J4a; J4b	83/334; 80/158
			J5	19/051
			J6	19/121
		Granite	J1	82/185
	CH 9058 – 10013		J2	82/216
5			J3	82/251
			J4	82/149
			J5	19/064
			J1a; J1b	75/237; 75/063
6	CH 10013 – 10187	Granite and $Tuff^{(1)}$	J2a; J2b	83/285; 75/093
		Iull	J3	18/199
			J1	83/225
7	CH 10187 – 10583	Tuff	J2	59/263
7			J3a; J3b	82/312; 83/135
			J4a; J4b	82/342; 83/165
Note: (1)	Along geological contact where both rock types were encountered.			

Table 2.7Summary of Rock Joint Data recorded along the Main Tunnel (after
DNJV, 2011)

2.3.4.4 Portion 4 (CH 7550 – 9058)

Arup (2007) predicted five sub-vertical joint sets and one sub-horizontal joint set at CH 7700 – 9600. In reality, four sub-vertical joint sets (J1-J4) and two sub-horizontal joint sets (J5-J6) were interpreted at Portion 4 (Figure 2.9). Major joint sets J2 and J3 (both NE-SW trending) were more prominent among other joint sets within the portion and they formed a conjugate pair at dihedral of around 30° . Joint spacing was described as "closely to medium spaced" or "extremely closely to closely spaced", which accounted for 75% and 25% of the length of the portion, respectively. Joint aperture was described as "tight to extremely narrow". In terms of nature of infilling, rock joints in 50% of the length of the portion were stained and 50% with clay infilling.

2.3.4.5 Portion 5 (CH 9058 – 10013)

Arup (2007) predicted two sub-vertical joint sets and two sub-horizontal joint sets at CH 9600 – 10100. In reality, four sub-vertical joint sets (J1-J4) and one sub-horizontal joint set (J5) were interpreted at Portion 5 (Figure 2.9). Major joint sets J1 and J2 (both NW-SE trending) were more prominent among other joint sets within the portion and they formed a conjugate pair at a dihedral angle of around 30°. Joint spacing was described as "very closely to medium spaced", "very closely to closely spaced" and "extremely closely to closely spaced" in 60%, 20%, and 20% of the length of the portion, respectively. Joint aperture was described as "tight to extremely narrow". In terms of nature of infilling, rock joints in 40% of the length of the portion were stained and 60% with "non-clay" infilling.

2.3.4.6 Portion 6 (CH 10013 – 10187)

At Portion 6, two sub-vertical joint sets (J1-J2) and one sub-horizontal joint set (J3) were interpreted (Figure 2.9). Major joint set J3 (NW-SE trending) was more prominent among other joint sets within the portion. Joint spacing was described as "very closely to medium spaced". Joint aperture was described as "tight to narrow". "Clay" infilling was recorded in rock joints in the portion. The rock joint patterns were not compared with the pre-construction geological model as both granite and tuff were encountered at Portion 6.

2.3.4.7 Portion 7 (CH 10187 – 10583)

Arup (2007) predicted three sub-vertical joint sets at CH 10100 - 10700. In reality, four sub-vertical joint sets (J1-J4) were interpreted, of which J3 and J4 formed a conjugate pair at Portion 7 (Figure 2.9). Some sub-horizontal random joints were also recorded. Joint spacing was described as "very closely to medium spaced". Joint aperture was described as "tight to narrow". Both "clay" and "non-clay" infilling were recorded within the portion.

Figure 2.9 Stereoplots Based on the Rock Joint Data from the As-built Records of the Main Tunnel

2.4 Engineering Geological Properties

2.4.1 Rock Mass Quality

Arup (2007) assessed the rock mass quality by using the Q-system with the following equation as defined by Barton et al (1974):

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF} \quad \dots \tag{2.1}$$

Based on the above scheme, the rock mass quality could be sub-divided into a number of Rock Rating Classes as shown in Table 2.8. The consultant also conducted a statistical assessment of the anticipated Q-values into six portions by distribution of rock types. The rock rating classes are simplified as shown in Table 2.9.

Table 2.8Classification of Rock Rating Classes Based on Q-value (after
Barton et al, 1974; Arup, 2007)

Q-value	Rock Rating Class
< 0.1	Extremely Poor
0.1 - 1	Very Poor
1 - 4	Poor
4 - 10	Fair
10 - 40	Good
> 40	Very Good

Table 2.9Summary of Distribution of Predicted Q-value of the Main Tunnel (after
Arup, 2007)

Chainage (m)	Rock Type	Estimated Percentage in Rock Rating Class					
		Ext. Poor	Very Poor	Poor	Fair	Good	Very Good
CH 0 – 4100	Granite	0%	1%	5%	21%	41%	32%
CH 4100 – 6700	Tuff	1%	5%	24%	35%	33%	3%
CH 6700 – 7700	Granite	0%	0%	5%	18%	43%	33%
CH 7700 – 9600	Tuff	0%	2%	14%	20%	51%	12%
CH 9600 – 10100	Granite	0%	2%	15%	21%	51%	10%
CH 10100 – 10700	Tuff	2%	8%	28%	38%	24%	0%
During construction, the contractor also assessed the rock mass quality by using the Q-system. However, the six individual parameters were not recorded in the contractor's geological long section (DNJV, 2011). A statistical assessment of the actual Q-values was conducted and grouped into the simplified rock rating classes and by distribution of rock types. A total number of seven portions are grouped and the results are shown in Table 2.10.

The anticipated ranges of Q-value and actual Q-value are subsequently plotted in Figure 2.10. The rock mass quality recorded in various segments of the main tunnel is discussed in Section 2.4.1.1 to 2.4.1.7.

2.4.1.1 Portion 1 (CH 0 – 4000)

At Portion 1, the as-mapped Q-value ranged from 0.25 to 400.00. Over 70% of the rock mass was classified as "Good" or better in the rock rating class, which was consistent with the predictions made by Arup (2007). Rock mass quality increased readily from CH 2000 to CH 4000, such that a maximum Q-value of 400.0 was recorded at CH 3313 and CH 3736, which was significant higher than the anticipated Q-value. The rock mass was inferred to be massive with no major joint sets, based on the contractor's as-built records. There was one exception that the Q-value dropped from 15.83 to 0.56 at CH 652, which was thought to be related to the Tai Tam Fault as inferred by Arup (2007). A significant drop in Q-value (i.e. from 15.00 to 0.44) was recorded within the weakness zone at CH 2100, which was in the vicinity of the Wong Nai Chung Gap Fault as inferred by Arup (2007).

	Dealr	Actual Percentage in Rock Rating Class								
Chainage (m)	Туре	Ext. Poor	Very Poor	Poor	Fair	Good	Very Good			
CH 0 – 4000	Granite	0%	5%	9%	14%	40%	32%			
CH 4000 – 6860	Tuff	0%	7%	57%	30%	6%	0%			
CH 6860 – 7550	Granite	0%	0%	2%	34%	43%	21%			
CH 7550 – 9058	Tuff	3%	5%	21%	28%	32%	11%			
CH 9085 – 10013	Granite	0%	17%	43%	17%	23%	0%			
CH 10013 – 10187	Granite & Tuff	54%	38%	8%	0%	0%	0%			
CH 10187 – 10583	Tuff	27%	52%	21%	0%	0%	0%			

Table 2.10Summary of Distribution of Actual Q-value of the Main Tunnel (after
DNJV, 2011)

Figure 2.10 Distribution of Predicted and Actual Q-values along the Main Tunnel (after Arup, 2007; DNJV, 2011)

2.4.1.2 Portion 2 (CH 4000 – 6860)

At Portion 2, the as-mapped Q-value ranged from 0.80 to 35.00. Over 50% of the rock mass fell within the "Poor" category in the rock rating class, while Arup (2007) predicted that there should be less than 25% of "Poor" rock mass. Poor rock mass with Q-values ranging from 1.00 to 4.00 was primarily located at CH 5253 - 5873 where a prominent weakness zone was described in the contractor's geological long sections, which was in the vicinity of four photolineaments as inferred by Arup (2007).

2.4.1.3 Portion 3 (CH 6860 – 7550)

At Portion 3, the as-mapped Q-value ranged from 2.67 to 200.00. Over 90% of the rock mass was classified as "Fair" or better in the rock rating class, which was consistent with the predictions made by Arup (2007). The maximum Q-value recorded in Portion 3 was at CH 7055. Three photolineaments were inferred by Arup (2007) in Portion 3 but they seemed not to carry any implications on the rock mass quality.

2.4.1.4 Portion 4 (CH 7550 – 9058)

At Portion 4, the as-mapped Q-value ranged from 0.03 to 100.00. Around 40% of the

rock mass was classified as "Good" or better in the rock rating class, which was lower than the anticipated rock mass conditions (i.e. over 60% of "Good" or better rock mass). Extremely poor rock mass conditions were recorded at CH 8319 (i.e. Q-value of 0.03) and at CH 8990 – 9000 (i.e. Q-value ranged from 0.03 to 0.07), which were interpreted to be related to the Sandy Bay Fault.

2.4.1.5 Portion 5 (CH 9058 – 10013)

At Portion 5, the as-mapped Q-value ranged from 0.13 to 33.33. Over 40% of the rock mass was classified as "Poor" in the rock rating class. "Very Poor" rock mass accounted for 17% of Portion 5, which were interpreted to be mostly related to Sandy Bay Fault, and Telegraph Bay Fault running sub-parallel to the main tunnel alignment. The rock mass conditions at Portion 5 were poorer than expected, such that Arup (2007) originally predicted that there should be around 50% of "Good" rock mass.

2.4.1.6 Portion 6 (CH 10013 – 10187)

At Portion 6, the as-mapped Q-value ranged from 0.03 to 2.20. Over 50% of the rock mass was classified as "Extremely Poor" in the rock rating class. Portion 6 had the worst rock mass conditions among other portions, which was thought to be related to the deeply-weathered zones along the geological contact between granite and tuff.

2.4.1.7 Portion 7 (CH 10187 – 10583)

At Portion 7, the observed Q-value ranged from 0.07 to 2.52. Arup (2007) anticipated that near 60% of rock mass would belong to "Fair" or better category in the rock rating class. In reality, over 50% of the rock mass was classified as "Very Poor", which was thought to be related to the Telegraph Graph Bay Fault. Adverse rock mass conditions were recorded within the whole portion in the contractor's geological long section (DNJV, 2011).

2.4.2 Groundwater Conditions

Hong Kong West Drainage Tunnel (HKWDT) constituted a deep hard rock tunnel such that the consultant treated the rock mass as a homogeneous medium with respect to its hydrogeological behavior. The nature of groundwater inflow was assumed to be dictated primarily by hydraulic conductivity of the rock mass. Due to the crystalline nature of both the granitic and volcanic rock mass, the predominant factor controlling groundwater inflow towards the tunnel would be the presence of discontinuities, weakness zones, faults, etc. (Arup, 2007). HKWDT was designed as a drained tunnel dependent on pre-excavation grouting to reduce water inflow. The following contractual requirements for allowable inflow limit were imposed for the Project:

(a) 0.2 litre/minute per metre of probe hole ahead of the excavation face;

- (b) 10 litres/minute per 100 metres of tunnel;
- (c) 2 litres/minute through excavation face(s); and
- (d) 300 litres/minute at tunnel portal(s).

Probing ahead of the excavation face was carried out by the contractor and actual rates of groundwater inflow were measured to determine the need for pre-excavation grouting. The groundwater inflow rate, together with the length of probe hole and volume of grout being used were summarised in the contractor's geological long sections (DNJV, 2011). The raw data is compiled in Appendix C of this report.

Given the lengths of each round probe hole were different, the unit for groundwater inflow was nominalised (L/min to L/min per metre). The data is illustrated in the form of a distribution curve as shown in Figure 2.11. The maximum inflow experienced in the main tunnel was 4.75 L/min/m at around CH 9834. Over 70% of the probing records indicated that the inflow rates were lower than 0.47 L/min/m (i.e. the mean value as shown in Figure 2.11).

Figure 2.11 Distribution of Groundwater Inflow along the Main Tunnel (after DNJV, 2011)

The results, together with the distribution of rock type and locations of weakness zones are presented in Figure 2.12. The groundwater conditions along the main tunnel are discussed in Sections 2.4.2.1 to 2.4.2.7.

Figure 2.12 Groundwater Inflow from Probing along the Main Tunnel (after DNJV, 2011)

2.4.2.1 Portion 1 (CH 0 – 4000)

The groundwater inflow in probe holes within Portion 1 ranged from dry to 1.78 L/min/m with an average inflow of 0.16 L/min/m. The highest inflow rate was recorded at CH 627 and was associated with Tai Tam Fault as inferred by Arup (2007). Insignificant groundwater inflow was recorded in the vicinity of Wong Nai Chung Gap Fault and Middle Gap Fault.

2.4.2.2 Portion 2 (CH 4000 – 6860)

The groundwater inflow in probe holes within Portion 2 ranged from dry to 3.42 L/min/m with an average inflow of 0.68 L/min/m. The highest inflow rate was recorded at CH 5602 and was within an extensive weakness zone at CH 5254 – 5873 as indicated by the contractor (DNJV, 2011). Groundwater inflow was recorded in the vicinity of Wanchai Gap Fault (i.e. up to 1.81 L/min/m), Magazine Gap Fault (i.e. up to 1.39 L/min/m) and Victoria Gap Fault (i.e. up to 0.91 L/min/m).

2.4.2.3 Portion 3 (CH 6860 – 7550)

The groundwater inflow in probe holes within Portion 3 ranged from dry to 0.51 L/min/m with an average inflow of 0.05 L/min/m. The highest inflow rate was recorded at CH 7340 and was not associated with any known geological structures.

2.4.2.4 Portion 4 (CH 7550 – 9058)

The groundwater inflow in probe holes within Portion 4 ranged from dry to

1.78 L/min/m with an average of 0.15 L/min/m. The highest inflow rate was recorded at CH 9065 and within a weakness zone at CH 9000 - 9071 as indicated by the contractor (DNJV, 2011).

2.4.2.5 Portion 5 (CH 9058 – 10013)

The groundwater inflow in probe holes within Portion 5 ranged from dry to 4.75 L/min/m with an average inflow of 1.54 L/min/m, which was the highest among other portions of the main tunnel. The highest inflow rate was recorded at CH 9833 and within an extensive weakness zone at CH 9616 – 10583 as indicated by the contractor (DNJV, 2011).

2.4.2.6 Portion 6 (CH 10013 – 10187)

The groundwater inflow in probe holes within Portion 6 ranged from dry to 0.01 L/min/m and was considered as minimal in this portion.

2.4.2.7 Portion 7 (CH 10187 – 10583)

The groundwater inflow in probe holes within Portion 7 ranged from dry to 0.17 L/min/m with an average of 0.03 L/min/m.

3 Discussion

3.1 Summary of Findings

In terms of the distribution of rock type, the pre-construction geological model proved to be quite accurate in the majority of the main tunnel. Some deviations on the distribution of grain sizes of granites were noted in the consultant's report (Arup, 2007) and the contractor's as-built geological long sections (DNJV, 2011). However, these textural variations in granites had a relatively minor engineering implications to the tunnelling project.

For volcanic rocks, either fine ash tuff or coarse ash tuff were recorded during the construction stage, and their distribution generally concurs with the predictions given by Arup (2007). The consultant also attempted to indicate the locations where metamorphosed tuffs would be anticipated (Arup, 2007), given that it might carry engineering implications on TBM excavation as their physical properties could be different from non-metamorphosed tuff. Nevertheless, the contractor did not record any metamorphosed tuffs throughout their geological section (DNJV, 2011).

The main tunnel encountered the intrusive contact between granite and volcanic rocks at five locations, as predicted by Arup (2007) and confirmed by DNJV (2011), which is summarised in Table 3.1. Intrusive contacts are usually irregular in shape and the underground conditions are highly variable. The fourth geological contact, which was originally anticipated between Pok Fu Lam and High West at CH 9600. In reality, the contact was encountered between Lung Fu Shan and High West at CH 9058.

Contact No.	Predicted Chainage (m)	Actual Chainage (m)	Remarks
1	CH 4100	CH 4000	Sharp geological contact, 100 m to the east
2	CH 6700	CH 6860	Sharp geological contact, 160 m to the west
3	CH 7770	CH 7550	Sharp geological contact, 220 m to the east
4	CH 9600	CH 9058	Sharp geological contact, 542 m to the east
5	CH 10100	CH 10013 – 10187	Contact zone that is not clearly defined

Table 3.1Summary of Geological Contacts between Granite and Tuff along the Main
Tunnel (after Arup, 2007; DNJV, 2011)

In terms of structural geology, three types of geological structures, namely "Major Fault", "Minor Fault" and "Photolineament", of different extent of influence zone and transition zone, were inferred by Arup (2007) along the main tunnel. On the other hand, the terminologies "shear zone", "fault zone", "fault breccia", "fault gouge" and "shear zone with highly fractured rock mass" were used qualitatively for describing weakness zones by the contractor (DNJV, 2011). The locations of weakness zones overlap with four out of eight major faults, including the Wong Nai Chung Gap Fault, Victoria Gap Fault, Sandy Bay Fault and Telegraph Bay Fault. An extensive weakness zone that overlapped with four photolineaments was located at CH 5254 – 5873. No record of weakness zones, which might be indicative of the Tai Tam Fault, Middle Gap Fault, Wanchai Gap Fault and Magazine Gap Fault were shown in the contractor's geological long section (DNJV, 2011).

In terms of rock joints, a wealth of rock joint data was collected by the contractor during tunnel mapping and was plotted on stereonets. The volcanic rocks have a relatively higher number of joint sets in comparison to granitic rocks along the main tunnel.

In terms of Q-value and rock mass rating class, the predictions made by Arup (2007) for Portions 1 to 4 of the main tunnel generally concurred with the actual rock mass quality as recorded by the contractor (DNJV, 2011). As for Portions 5 to 7 of the main tunnel, the rock mass quality was poorer than expected and was thought to be related to the influence by the Sandy Bay Fault and the Telegraph Bay Fault.

In terms of groundwater, areas of significant groundwater were mainly within Portions 2 and 5 of the main tunnel and were associated with Sandy Bay Fault, Telegraph Bay Fault and weakness zones.

3.2 Limitations of this Study

The present study was largely based on the consultant's geotechnical interpretation report and the contractor's as-built geological long section. Original tunnel mapping records and operational information of TBM (e.g. advancement rate) of the project were unavailable for review and study. In the contractor's as-built geological long section, the descriptions for

adverse geological features were very general, making it difficult to correlate with the inferred faults as described in the consultant's report. The data scarcity might also due to the fact that tunnel mapping could only be conducted at cutter head or telescopic opening of the TBM tunnel. The above limitations were acknowledged.

4 Conclusions

A review study has been conducted on the engineering geological aspects of Hong Kong West Drainage Tunnel. The useful engineering geological data, including the lithology, geological structures, rock mass quality and groundwater conditions were extracted from the contractor's as-built geological long section. The comparisons between the pre-construction and post-construction geological models were documented in this report. The similarities and differences between the two models, including the distribution of lithology, locations of intrusive contacts, rock joint orientations and adverse rock mass conditions were discussed. The data will be used in setting up a tunnel database for future use.

5 References

- Arup (2007). Geotechnical Interpretation Report. Agreement No. CE17/2005 (DS) -Tender and Construction of HK West Drainage Tunnel. Ove Arup and Partners Limited, Hong Kong.
- Barton, N., Lien, R. & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. *Rock Mechanics*, Vol. 6, No. 5, pp 189-236.
- Dragages-Nishimatsu Joint Venture (DNJV) (2011). As-Built Geological Records. DSD Contract No. DC/2007/10 - Design and Construction of Hong Kong West Drainage Tunnel. Dragages-Nishimatsu Joint Venture, Hong Kong.
- Geotechnical Control Office (GCO) (1982). *Mid-Levels Study: Report on Geology, Hydrology and Soil Properties.* Geotechnical Control Office, Hong Kong, 2 volumes, 266 p. plus 54 drawings.
- Geotechnical Control Office (GCO) (1986). Hong Kong & Kowloon. Hong Kong Geological Survey Map Sheet 11, Solid and Superficial Geology, 1:20000 Series HGM20 (Edition I). Geotechnical Control Office, Hong Kong.
- Geotechnical Engineering Office (GEO) (2012). Hong Kong & Kowloon. Hong Kong Geological Survey Map Sheet 11, Solid and Superficial Geology, 1:20000 Series HGM20 (Edition II). Geotechnical Engineering Office, Hong Kong.
- Strange, P.J. & Shaw, R. (1986). Geology of Hong Kong Island and Kowloon (Hong Kong Geological Survey Memoir No. 2). Geotechnical Control Office, Hong Kong, 134 p.

Appendix A

Summary of Engineering Geological Data

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
7.00	III/IV	K⊪	gfin	-	Damp	3	0.44	-	
22.00	II/III	K⊪	gfm	-	Dry	3	0.44	-	
23.00	II/III	K⊪	gfm	-	Damp	3	1.94	-	
27.00	II/III	Klb	gfin	-	Dry	3	1.94	-	
29.00	II/III	Klb	gfin	-	Damp	3	0.83	-	
30.00	II/III	Klb	gfm	-	Damp	4	0.25	-	
32.00	II/III	Klb	gfm	-	Wet	4	0.75	-	
35.00	II/III	Klb	gfin	-	Damp	3+R	0.41	-	
47.00	Ι	Klb	gfin	-	Damp	3+R	2.87	-	
54.00	I/II	Klb	gfin	-	Dry	3	2.27	-	
60.00	III	Klb	gfin	-	Dry	3	0.33	-	
63.00	IV/V	Klb	gfin	-	Dry	3	2.00	-	
66.00	I/III	Klb	gfin	-	Dry	2	1.00	-	
68.00	I/II/III	Klb	gfin	-	Dry	3	3.50	-	
84.00	II/III	Klb	gfin	-	Damp	3	0.69	-	
94.00	II/III	Klb	gfm	-	Dry	2+R	1.30	-	
98.00	II/III	K℔	gfm	-	Damp	3	0.63	-	
120.00	II/III	Klb	gfin	-	Dry	3	1.25	-	
123.00	I/II	Klb	gfin	-	Dry	3	3.00	-	
137.00	I/II	Klb	gfin	-	Dry	3	2.63	-	
163.00	I/II	Klb	gfin	-	Dry	3	1.25	-	
180.00	I/II	Klb	gfin	-	Dry	3	1.29	-	
183.00	I/II	Klb	gfin	PW90/100	Dry	3	16.67	ET001	
192.97	I/II	Klb	gfm	PW90/100	Dry	3	16.67	ET002	
214.70	I/II	Klb	gfin	UW to PW90/100	Dry	3	16.67	ET003	
231.16	I/II	Klb	gfin	UW to PW90/100	Dry	3	16.67	ET004	
264.16	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET005	
290.00	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET006	
304.76	Ι	Klb	gfm	UW to PW90/100	Dry	3	20.00	ET007	
310.76	I	Klb	gfm	UW to PW90/100	Dry	3	11.10	ET008	
357.20	I/II	Klb	gfm	UW to PW90/100	Dry	3	22.20	ET009	
376.53	I/II	Klb	gfin	UW to PW90/100	Dry	3	40.00	ET010	
388.79	I/II	Klb	gfin	UW to PW90/100	Dry	3	18.90	ET011	
405.09	I/II	Klb	gfm	UW to PW90/100	Dry	3	20.00	ET012	
424.04	I/II	Klb	gfin	UW to PW90/100	Dry	3	20.00	ET013	
434.41	I/II	Klb	gfm	UW to PW90/100	Dry	3	20.00	ET014	
445.84	I/II	Klb	gfm	UW to PW90/100	Dry	3	31.67	ET015	
470.06	I/II	Klb	gfm	UW to PW90/100	Dry	3	31.67	ET016	
487.85	I/II	Klb	gfm	UW to PW90/100	Dry	3	15.00	ET017	
504.12	I/II	Klb	gfm	UW to PW90/100	Dry	3	15.83	ET018	
529.90	I/II	Klb	gfm	UW to PW90/100	Dry	3	15.83	ET019	
552.05	I/II	Klb	gfm	UW to PW90/100	Dry	3	15.83	ET020	

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 1 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
574.92	I/II	Klb	gfm	UW to PW90/100	Dry	3	15.83	ET021	
601.93	I/II	Klb	gfm	UW to PW90/100	Dry	3	21.10	ET022	pegmatite veins and basalt dykes observed
621.53	I/II	Klb	gfm	UW to PW90/100	Dry	3	15.83	ET023	pegmatite veins and basalt dykes observed
651.52	I/II	Klb	gfm	UW to PW90/100	Minor Inflow	3	0.56	ET024	<5L/min, pegmatite veins and basalt dykes observed
652.96	III-IV	Klb	gfm	UW to PW90/100	Minor Inflow	3	7.50	ET025	<5L/min, pegmatite veins and basalt dykes observed
672.25	I/II	Klb	gfm	UW to PW90/100	Dry	2	30.00	ET026	pegmatite veins and basalt dykes observed
682.96	I/II	Klb	gfm	UW to PW90/100	Dry	3	33.33	ET027	pegmatite veins and basalt dykes observed
688.96	I/II	Klb	gfm	UW to PW90/100	Dry	3	33.33	ET028	pegmatite veins and basalt dykes observed
690.54	Ι	Klb	gfm	UW to PW90/100	Dry	3	50.00	ET029	pegmatite veins and basalt dykes observed
702.55	Ι	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET030	pegmatite veins and basalt dykes observed
721.41	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET031	pegmatite veins and basalt dykes observed
735.37	Ι	Klb	gfm	UW to PW90/100	Dry	3	47.50	ET032	pegmatite veins and basalt dykes observed
739.24	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET033	pegmatite veins and basalt dykes observed
758.24	I/II	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET034	pegmatite veins and basalt dykes observed
779.08	I	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET035	pegmatite veins and basalt dykes observed
792.58	I/II	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET036	pegmatite veins and basalt dykes observed
804.31	I/II	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET037	
810.31	I/II	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET038	
818.11	I/II	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET039	
828.43	I/II	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET040	
842.07	I/II	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET041	
842.17	I/II	Klb	gfm	UW to PW90/100	Dry	2	100.00	ET042	
856.94	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET043	
867.67	Ι	Klb	gfm	UW to PW90/100	Dry	2	100.00	ET044	
879.62	Ι	Klb	gfm	UW to PW90/100	Minor Inflow	2	75.00	ET045	<5L/min
909.69	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET046	
924.61	Ι	Klb	gfm	UW to PW90/100	Dry	2	71.25	ET047	
945.74	I/II	Klb	gfm	UW to PW90/100	Dry	2	23.80	ET048	Shear zone, manganese coating, surface staining and chloride coating
960.67	I/II	Klb	gfm	UW to PW90/100	Dry	2	71.25	ET049	
981.65	I/II	Klb	gfm	UW to PW90/100	Dry	2	30.00	ET050	Fault zone, 85/350, 150mm wide grade iv infill
989.24	I/II	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET051	
1008.71	Ι	Klb	gfm	UW to PW90/100	Minor Inflow	2	75.00	ET052	<5L/min
1031.23	Ι	Klb	gfm	UW to PW90/100	Minor Inflow	2	75.00	ET053	<5L/min
1059.93	I/II	Klb	gfm	UW to PW90/100	Minor Inflow	3	31.67	ET054	<5L/min
1062.72	Ι	Klb	gfm	UW to PW90/100	Dry	3	33.33	ET055	
1070.30	I/II	Klb	gfm	UW to PW90/100	Dry	2	47.50	ET056	
1083.80	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET057	
1092.79	I	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET058	
1107.82	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET059	
1131.78	Ι	Klb	gfm	UW to PW90/100	Dry	2	66.70	ET060	
1144.38	I	Klb	gfm	UW to PW90/100	Dry	2	50.00	ET061	
1170.74	I	Klb	gfm	UW to PW90/100	Dry	2	47.00	ET062	

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 2 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
1182.89	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET063	
1193.36	Ι	Klb	gfm	UW to PW90/100	-	-	-	ET064	
1199.36	Ι	Klb	gfm	UW to PW90/100	Dry	2	75.00	ET065	
1215.89	Ι	Klb	gfm	UW	Dry	2	50.00	ET066	
1245.99	Ι	Klb	gfm	UW	Dry	2	71.25	ET067	
1259.38	I/II	Klb	gfm	UW	Dry	3	21.25	ET068	
1269.92	I	Klb	gfm	UW	Dry	1	100.00	ET069	
1298.29	Ι	Klb	gfm	UW	Dry	2	50.00	ET070	
1309.79	Ι	Klb	gfm	UW	Dry	2	50.00	ET071	
1325.32	Ι	Klb	gfm	UW	Dry	2	50.00	ET072	
1356.93	I/II	Klb	gfm	UW	Dry	3	30.00	ET073	
1376.50	Ι	Klb	gfm	UW	Dry	2	100.00	ET074	
1386.99	Ι	Klb	gfm	UW	Dry	2	100.00	ET075	
1400.37	Ι	Klb	gfin	UW	Dry	2	100.00	ET076	
1427.33	I	Klb	gfm	UW	Dry	2	75.00	ET077	
1451.47	I	Klb	gfm	UW	Dry	1	100.00	ET078	
1471.01	Ι	Klb	gfin	UW	Dry	1	50.00	ET079	
1481.55	Ι	Klb	gfm	UW	Dry	2	100.00	ET080	
1498.15	Ι	Klb	gfm	UW	Dry	1	100.00	ET081	
1520.45	Ι	Klb	gfm	UW	Minor Inflow	2	66.00	ET082	<5L/min
1555.10	Ι	Klb	gfm	UW	Dry	1	66.67	ET083	
1564.02	Ι	Klb	gfm	UW	Dry	1	100.00	ET084	
1586.44	I	Klb	gfm	UW	Minor Inflow	3	11.88	ET085	<5L/min
1608.68	Ι	Klb	gmc	UW	Dry	3	20.00	ET086	
1618.07	I	Klb	gmc	UW	Dry	3	18.89	ET087	
1636.05	Ι	Klb	gmc	UW	Dry	4	5.30	ET088	
1649.54	Ι	Klb	gmc	UW	Dry	4	6.00	ET089	
1664.43	I	Klb	gmc	UW	Minor Inflow	2	28.30	ET090	<5L/min
1681.09	Ι	Klb	gmc	UW	Minor Inflow	2	21.30	ET091	<5L/min
1703.41	Ι	Klb	gmc	UW	Dry	2	33.33	ET092	
1712.62	Ι	Klb	gmc	UW	Dry	3	18.89	ET093	
1729.34	I/II	Klb	gmc	UW	Dry	3	8.90	ET094	
1742.72	I/II	Klb	gmc	UW	Dry	3	7.50	ET095	
1757.76	Ι	Klb	gmc	UW	Dry	4	9.00	ET096	
1775.71	I/II	Klb	gmc	UW	Dry	3	13.30	ET097	
1790.75	I/II	Klb	gmc	UW	Dry	3	16.69	ET098	
1808.79	I/II	Klb	gm	UW	Dry	3	5.00	ET099	
1822.27	I/II	Klb	gm	UW	Dry	3	3.33	ET100	
1838.75	II	Klb	gm	UW	Damp	3	8.80	ET101	
1853.67	I/II	Klb	gm	UW	Dry	3	31.67	ET102	
1867.34	I/II	Klb	gm	UW	Minor Inflow	3	21.25	ET103	<5L/min

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 3 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
1886.78	I/II	Klb	gm	UW	Dry	3	20.00	ET104	
1901.82	I/II	Klb	gm	UW	Damp	2	18.70	ET105	
1922.76	I/II	Klb	gm	UW	Dry	2	15.00	ET106	
1942.25	I/II	Klb	gm	UW	Dry	2	31.40	ET107	
1951.25	I/II	Klb	gm	UW	Dry	2	75.00	ET108	
1963.24	I/II	Klb	gm	UW	Dry	3	10.56	ET109	
1981.33	I/II	Klb	gm	UW	Dry	4	4.00	ET110	
2000.84	I/II	Klb	gm	UW to PW90/100	Dry	4	2.67	ET111	
2006.92	I/II	Klb	gm	UW to PW90/100	Dry	4	6.67	ET112	
2024.76	I/II	Klb	gm	UW to PW90/100	Dry	2	15.00	ET113	
2039.83	I/II	Klb	gm	UW to PW90/100	Dry	2	22.50	ET114	
2056.40	I/II	Klb	gm	UW to PW90/100	Dry	3	15.00	ET115	
2092.24	II-IV	Klb	gm	UW to PW90/100	Dry	4	1.83	ET116	Locally HDG
2099.92	II/III	Klb	gm	UW to PW90/100	Dry	3	0.44	ET117	Locally HDG, Fault Breccia
2118.12	I/II	Klb	gm	UW to PW90/100	Dry	3	7.22	ET118	
2126.95	II/III	Klb	gm	UW to PW90/100	Minor Inflow	3	7.22	ET119	<5L/min, Fault Breccia
2137.49	II/III	Klb	gm	UW to PW90/100	Dry	2	12.50	ET120	
2154.09	I/II	Klb	gm	UW to PW90/100	Minor Inflow	4	5.67	ET121	<5L/min
2181.19	I/II	Klb	gm	UW to PW90/100	Dry	3	7.50	ET122	
2193.09	II	Klb	gm	UW to PW90/100	Dry	3	14.20	ET123	
2209.56	I/II	Klb	gm	UW	Dry	4	5.66	ET124	
2220.05	I/II	Klb	gm	UW	Dry	5	1.86	ET125	Shear zone
2235.20	I/II	Klb	gm	UW	Dry	5	5.33	ET126	
2248.09	I/II	Klb	gm	UW	Dry	3	15.80	ET127	
2256.14	I/II	Klb	gm	UW	Dry	3	10.00	ET128	
2269.64	I/II	Klb	gm	UW	Dry	3	14.16	ET129	
2282.99	Ι	K℔	gm	UW	Dry	2	15.83	ET130	
2299.62	Ι	Klb	gm	UW	Dry	2	15.83	ET131	
2314.58	I/II	Klb	gm	UW	Dry	2	14.20	ET132	
2329.49	II	Klb	gm	UW	Dry	3	7.10	ET133	
2349.07	I/II	Klb	gm	UW	Minor Inflow	3	5.00	ET134	<5L/min
2352.09	I/II	Klb	gm	UW	Minor Inflow	2	9.00	ET135	<5L/min
2371.45	I/II	Klb	gm	UW	Dry	3	11.25	ET136	
2385.08	Ι	Klb	gm	UW	Dry	2	67.50	ET137	
2401.45	I/II	Klb	gm	-	Dry	3	28.33	ET138	
2428.48	I/II	Klb	gm	-	Dry	4	1.67	ET139	
2452.44	I/II	Klb	gm	-	Dry	3	10.55	ET140	
2476.51	I	Klb	gm	-	Dry	3	10.55	ET141	
2489.99	I/II	Klb	gm	-	Dry	3	11.30	ET142	
2501.92	I/II	Klb	gm	-	Dry	2	22.50	ET143	
2524.62	I/II	Klb	gm	-	Dry	2	22.50	ET144	

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 4 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
2531.92	I/II	K⊪	gm	-	Dry	4	11.25	ET145	
2546.98	Ι	Klb	gm	-	Dry	2	47.50	ET146	
2555.99	Ι	Klb	gm	-	Dry	2	31.67	ET147	
2567.94	Ι	Klb	gm	-	Dry	2	23.75	ET148	
2581.48	I/II	Klb	gm	-	Dry	2	22.50	ET149	
2598.00	I/II	Klb	gm	-	Dry	2	16.70	ET150	
2617.51	II	Klb	gm	UW	Dry	3	7.08	ET151	
2635.55	I/II	Klb	gm	UW	Dry	3	6.25	ET152	
2647.70	I/II	Klb	gm	UW	Dry	1	63.30	ET153	
2652.22	I/II	Klb	gm	UW	Dry	3	25.00	ET154	
2670.12	Ι	Klb	gm	UW	Dry	1	50.00	ET155	
2685.04	Ι	Klb	gm	UW	Dry	1	100.00	ET156	
2700.08	I/II	Klb	gm	UW	Dry	2	35.62	ET157	
2716.63	I/II/III	Klb	gm	UW	Dry	3	2.50	ET158	
2734.58	II	Klb	gm	UW	Dry	3	30.00	ET159	
2748.10	I/II	Klb	gm	UW	Dry	3	10.60	ET160	
2764.61	I/II	Klb	gm	UW	Dry	2	50.00	ET161	
2781.11	I/II	K℔	gm	UW	Dry	4	6.33	ET162	
2806.86	Ι	Klb	gm	UW	Dry	1	150.00	ET163	
2820.13	I/II	Klb	gm	UW	Dry	3	16.70	ET164	
2833.70	Ι	Klb	gm	UW	Dry	3	6.25	ET165	
2844.28	Ι	Klb	gm	UW	Dry	2	37.50	ET166	
2858.68	Ι	Klb	gm	UW	Dry	3	10.60	ET167	
2890.68	Ι	Klb	gm	UW	Dry	2	25.00	ET168	
2904.27	I/II	Klb	gm	UW	Dry	3	24.00	ET169	
2928.23	I/II	Klb	gm	UW	Minor Inflow	2	12.00	ET170	<5L/min
2928.34	I/II	Klb	gm	UW	Minor Inflow	2	12.00	ET171	<5L/min
2955.40	Ι	Klb	gm	UW	Dry	4	4.00	ET172	
2964.95	Ι	Klb	gm	UW	Dry	3	16.70	ET173	
2976.33	Ι	Klb	gm	UW	Dry	3	15.00	ET174	
2990.17	Ι	Klb	gm	UW	Dry	3	28.30	ET175	
3006.52	Ι	Klb	gm	UW	Dry	2	60.00	ET176	
3015.55	I/II	Klb	gm	UW	Dry	4	2.37	ET177	
3026.07	I/II	Klb	gm	UW	Dry	3	3.12	ET178	
3036.38	I/II	Klb	gm	UW	Dry	4	2.25	ET179	
3052.87	I/II	Klb	gm	UW	Dry	2	25.00	ET180	
3075.47	Ι	Klb	gm	UW	Dry	2	5.33	ET181	
3111.52	I	Klb	gm	UW	Dry	4	25.00	ET182	
3117.52	Ι	Klb	gm	UW	Dry	1	50.00	ET183	
3132.34	Ι	Klb	gm	UW	Dry	1	47.50	ET184	
3147.26	Ι	Klb	gm	UW	Dry	2	31.70	ET185	

Table ASummary of Engineering Geological Data (after DNJV, 2011) (Sheet 5 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
3147.54	Ι	Klb	gm	UW	Dry	2	31.70	ET186	
3164.03	Ι	Klb	gm	UW	Dry	3	21.10	ET187	
3189.51	Ι	Klb	gm	UW	Dry	2	23.80	ET188	
3192.46	Ι	Klb	gm	UW	Dry	2	50.00	ET189	
3202.99	Ι	Klb	gm	UW	Dry	4	67.00	ET190	
3235.96	Ι	Klb	gm	UW	Dry	2	10.00	ET191	
3243.50	Ι	Klb	gm	UW	Dry	3	6.70	ET192	
3252.46	Ι	Klb	gm	UW	Dry	3	6.70	ET193	
3269.10	Ι	Klb	gm	UW	Dry	3	11.10	ET194	
3278.00	Ι	Klb	gm	UW	Dry	3	11.10	ET195	
3291.51	Ι	Klb	gm	UW	Dry	2	25.00	ET196	
3295.97	Ι	Klb	gm	UW	Dry	2	33.75	ET197	
3312.63	Ι	Klb	gm	UW	Dry	0	400.00	ET198	
3317.22	I/II	Klb	gm	UW	Dry	1	400.00	ET199	
3338.10	Ι	Klb	gm	UW	Dry	1	400.00	ET200	
3345.64	Ι	Klb	gm	UW	Dry	0	400.00	ET201	
3359.09	Ι	Klb	gm	UW	Dry	1	400.00	ET202	
3366.68	Ι	Klb	gm	UW	Dry	1	400.00	ET203	
3389.98	I/II	Klb	gm	UW	Dry	3	7.20	ET204	
3395.20	Ι	Klb	gm	UW	Dry	2	50.00	ET205	
3422.39	I/II	Klb	gm	UW	Dry	3	8.33	ET206	
3431.17	I/II	Klb	gm	UW	Dry	3	8.30	ET207	
3444.69	I/II	Klb	gm	UW	Dry	3	13.30	ET208	
3465.69	I/II	Klb	gm	UW	Dry	3	8.30	ET209	
3477.96	I/II	Klb	gm	UW	Dry	1	71.25	ET210	
3491.27	I/II	Klb	gm	UW	Dry	3	10.56	ET211	
3494.24	I/II	Klb	gm	UW	Dry	3	5.67	ET212	
3531.75	II	Klb	gm	UW	Dry	2	13.10	ET213	
3539.19	II	Klb	gm	UW	Minor Inflow	4	2.50	ET214	<5L/min
3569.30	I/II	Klb	gm	UW	Seepage	2	20.00	ET215	
3582.83	I/II	Klb	gm	UW	Minor Inflow	2	7.08	ET216	<5L/min
3588.82	I/II	Klb	gm	UW	Dry	1	30.00	ET217	
3612.79	Ι	Klb	gm	UW	Minor Inflow	2	33.00	ET218	<5L/min
3629.86	Ι	Klb	gm	UW	Dry	2	22.50	ET219	
3638.31	I/II	Klb	gm	UW	Dry	2	45.00	ET220	
3662.36	II	Klb	gm	UW	Dry	3	7.78	ET221	
3675.86	II	Klb	gm	UW	Dry	3	8.89	ET222	
3684.86	Ι	Klb	gm	UW	Dry	3	9.40	ET223	
3687.99	Ι	Klb	gm	UW	Dry	3	10.60	ET224	
3706.00	I	Klb	gm	UW	Dry	2	23.80	ET225	
3716.50	Ι	Klb	gm	UW	Minor Inflow	1	100.00	ET226	<5L/min

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 6 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
3735.87	Ι	Klb	gm	UW	Dry	0	400.00	ET227	
3736.00	Ι	Klb	gm	UW	Dry	0	400.00	ET228	
3753.99	Ι	K⊯b	gm	UW	Dry	1	71.30	ET229	
3773.53	I/II	Klb	gm	UW	Dry	3	8.89	ET230	
3781.05	Ι	Klb	gm	UW	Dry	1	75.00	ET231	
3812.53	Ι	K℔	gm	UW	Dry	2	23.75	ET232	
3830.53	Ι	Klb	gm	UW	Dry	0	400.00	ET233	
3852.95	Ι	Klb	gm	UW	Dry	2	71.25	ET234	
3872.47	Ι	Klb	gm	UW	Dry	0	400.00	ET235	
3887.92	Ι	Klb	gm	UW	Dry	0	400.00	ET236	
3905.49	Ι	Klb	gm	UW	Dry	0	400.00	ET237	
3931.12	Ι	Klb	gm	UW	Dry	2	16.70	ET238	
3941.62	Ι	Klb	gm	UW	Dry	0	400.00	ET239	
3943.10	Ι	Klb	gm	UW	Dry	0	400.00	ET240	
3944.60	Ι	Klb	gm	UW	Dry	2	75.00	ET241	
3946.11	Ι	Klb	gm	UW	Dry	2	150.00	ET242	
3947.61	Ι	Klb	gm	UW	Dry	2	150.00	ET243	
3949.11	Ι	Klb	gm	UW	Minor Inflow	1	150.00	ET244	<5L/min
3950.60	I/II	Klb	gm	UW	Wet	2	10.00	ET245	
3952.08	I/II	Klb	gm	UW	Minor Inflow	3	3.93	ET246	<5L/min
3953.60	I/II	Klb	gm	UW	Damp	2	11.90	ET249	
3955.41	I/II	Klb	gm	UW	Minor Inflow	2	6.67	ET251	<5L/min
3956.66	I/II	Klb	gm	UW	Minor Inflow	2	15.80	ET253	<5L/min
3958.07	I/II	Klb	gm	UW	Minor Inflow	2	15.00	ET255	<5L/min
3958.08	I/II	Klb	gm	UW	Damp	2	11.25	ET247	
3959.60	Ι	Klb	gm	UW	Damp	1	23.30	ET248	
3961.41	Ι	Klb	gm	UW	Dry	2	17.80	ET250	
3962.66	Ι	Klb	gm	UW	Damp	2	25.00	ET252	
3964.07	Ι	Klb	gm	UW	Damp	2	25.00	ET254	
4013.13	I/II	Klb/Kra	gm/fat	UW	Dry	3+R	3.54	WT356	
4067.51	I/II	Kra	fat	UW	Dry	3+R	3.33	WT355	
4109.34	I/II	Kra	fat	UW	Minor Inflow	4	2.66	WT354	<5L/min
4198.12	I/II	Kra	fat	UW	Dry	3+R	4.01	WT353	
4243.15	I/II	Kra	fat	UW	Dry	3+R	3.44	WT352	
4274.00	I/II	Kra	fat	UW	Minor Inflow	4	5.50	WT351	<5L/min
4313.67	I/II	Kra	fat	UW	Dry	3+R	3.44	WT350	
4348.16	I/II	Kra	fat	UW	Dry	4	2.33	WT349	
4363.87	I/II	Kra	fat	UW	Dry	3+R	1.89	WT348	highly fractured rock mass
4401.85	I/II	Kra	fat	UW	Dry	3+R	5.00	WT347	
4445.89	I/II	Kra	fat	UW	Dry	3+R	6.25	WT346	
4468.58	I/II	Kra	fat	UW	Dry	3+R	6.67	WT345	

Table ASummary of Engineering Geological Data (after DNJV, 2011) (Sheet 7 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
4483.46	I/II	Kra	fat	UW	Dry	3+R	6.25	WT344	
4509.14	I/II	Kra	fat	UW	Dry	3+R	1.89	WT343	
4558.51	I/II	Kra	fat	UW	Dry	3+R	1.33	WT342	
4573.50	I/II	Kra	fat	UW	Dry	5	3.75	WT341	
4606.78	I/II	Kra	fat	UW	Dry	4	2.19	WT340	
4653.18	I/II	Kra	fat	UW	Dry	3+R	1.88	WT339	
4683.18	I/II	Kra	fat	UW	Dry	3+R	2.19	WT338	
4713.54	I/II	Kra	fat	UW	Dry	3+R	3.75	WT337	
4754.07	I/II	Kra	fat	UW	Damp	4	4.33	WT336	
4783.81	I/II	Kra	fat	UW	Minor Inflow	3	3.61	WT335	<5L/min
4803.39	I/II	Kra	fat	UW	Dry	3+R	2.70	WT334	
4842.59	I/II	Kra	fat	UW	Dry	3+R	2.92	WT333	
4908.50	I/II	Kra	fat	UW	Dry	3+R	2.25	WT332	
4926.20	I/II	Kra	fat	UW	Minor Inflow	3+R	2.50	WT331	
4937.03	I/II	Kra	fat	UW	Damp	3+R	2.08	WT330	
4955.90	II	Kra	fat	UW	Damp	3	2.70	WT329	
4985.02	I/II	Kra	fat	UW	Damp	3+R	2.08	WT328	
5034.67	Ι	Kra	fat	UW	Minor Inflow	4	3.33	WT327	<5L/min
5070.00	Ι	Kra	fat	UW	Dry	4	3.33	WT326	
5088.75	Ι	Kra	fat	UW	Dry	4	2.70	WT325	
5133.77	Ι	Kra	fat	UW	Dry	3	2.22	WT324	
5140.25	Ι	Kra	fat	UW	Dry	3+R	2.81	WT323	
5160.79	I/II	Kra	fat	UW	Dry	3+R	1.33	WT322	
5177.00	Ι	Kra	fat	UW	Damp	3	2.50	WT321	
5253.91	Ι	Kra	fat	UW	Damp	4	4.00	WT320	highly fractured rock mass
5271.89	Ι	Kra	fat	UW	Damp	4	1.00	WT319	highly fractured rock mass
5276.34	Ι	Kra	fat	UW	Damp	4	1.33	WT318	highly fractured rock mass
5321.45	Ι	Kra	fat	UW	Minor Inflow	3+R	2.08	WT317	<5L/min, highly fractured rock mass
5346.87	Ι	Kra	fat	UW	Damp	4	3.33	WT316	highly fractured rock mass
5366.71	Ι	Kra	fat	UW	Damp	4	3.33	WT315	highly fractured rock mass
5390.63	Ι	Kra	fat	UW	Damp	4	2.66	WT314	highly fractured rock mass
5416.15	Ι	Kra	fat	UW	Dry	3+R	3.75	WT313	highly fractured rock mass
5442.52	Ι	Kra	fat	UW	Minor Inflow	4	1.00	WT312	<5L/min, highly fractured rock mass
5465.81	Ι	Kra	fat	UW	Dry	3+R	3.30	WT311	highly fractured rock mass
5497.19	I/II	Kra	fat	UW	Minor Inflow	4	1.00	WT310	<5L/min, highly fractured rock mass
5509.35	Ι	Kra	fat	UW	Minor Inflow	4	0.89	WT309	<5L/min, highly fractured rock mass
5540.69	Ι	Kra	fat	UW	Damp	3	0.97	WT308	highly fractured rock mass
5563.34	Ι	Kra	fat	UW	Minor Inflow	4	2.33	WT307	<5L/min, highly fractured rock mass
5585.77	II	Kra	fat	UW	Minor Inflow	3	4.90	WT306	<5L/min, highly fractured rock mass
5608.30	II	Kra	fat	UW	Minor Inflow	4	1.32	WT305	highly fractured rock mass
5630.80	Ι	Kra	fat	UW	Damp	4	1.00	WT304	gm intrusion, highly fractured rock mass

Table ASummary of Engineering Geological Data (after DNJV, 2011) (Sheet 8 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
5653.17	Ι	Kra	fat	UW	Minor Inflow	4	2.00	WT303	<5L/min, highly fractured rock mass
5674.56	Ι	Kra	fat	UW	Damp	4	2.00	WT302	gm intrusion, highly fractured rock mass
5693.67	Ι	Kra	fat	UW	Minor Inflow	4	1.07	WT301	pegmatite veins, highly fractured rock mass
5711.71	II	Kra	fat	UW	Dry	3	6.70	WT300	gm intrusion
5734.45	Ι	Kra	fat	UW	Dry	4	1.07	WT299	gm intrusion, highly fractured rock mass
5753.99	I/II	Kra	fat	UW	Minor Inflow	4	2.67	WT298	<5L/min, gm intrusion, highly fractured rock mass
5762.66	I/II	Kra	fat	UW	Minor Inflow	4	1.33	WT297	<5L/min, highly fractured rock mass
5784.32	I/II	Kra	fat	UW	Minor Inflow	4	4.33	WT296	<5L/min
5794.64	II	Kra	fat	UW	Minor Inflow	4	1.80	WT295	<5L/min
5811.92	I/II	Kra	fat	UW	Medium Inflow	4	1.10	WT294	10L/min, highly fractured rock mass
5829.36	I/II	Kra	fat	UW	Minor Inflow	4	1.83	WT293	<5L/min, highly fractured rock mass
5843.76	I/II	Kra	fat	UW	Minor Inflow	4	1.33	WT292	<5L/min, highly fractured rock mass
5852.18	I/II	Kra	fat	UW	Minor Inflow	5	1.33	WT291	<5L/min, highly fractured rock mass
5873.10	I/II	Kra	fat	UW	Dry	4	1.06	WT290	highly fractured rock mass
5894.83	I/II	Kra	fat	UW	Dry	4	3.33	WT289	
5900.70	Ι	Kra	fat	UW	Dry	3	6.25	WT288	
5904.63	Ι	Kra	fat	UW	Dry	3	5.42	WT287	
5930.15	Ι	Kra	fat	UW	Minor Inflow	3	5.00	WT286	<5L/min
5938.43	I/II	Kra	fat	UW	Dry	4	4.32	WT285	
5965.80	I/II	Kra	fat	UW	Dry	3	8.90	WT284	
5989.04	Ι	Kra	fat	UW	Dry	3+R	7.08	WT283	
5994.61	Ι	Kra	fat	UW	Dry	3	7.50	WT282	
6013.53	Ι	Kra	fat	UW	Dry	3	7.50	WT281	
6036.91	Ι	Kra	fat	UW	Dry	3	8.30	WT280	
6051.59	I/II	Kra	fat	UW	Dry	2	28.30	WT279	
6088.68	I/II	Kra	fat	UW	Dry	3+R	20.00	WT278	
6097.89	I/II	Kra	fat	UW	Minor Inflow	3	7.08	WT277	<5L/min
6118.43	I/II	Kra	fat	UW	Damp	4	5.67	WT276	
6137.17	I/II	Kra	fat	UW	Damp	4	5.67	WT275	
6154.70	Ι	Kra	fat	UW	Dry	4	8.00	WT274	
6164.05	Ι	Kra	fat	UW	Dry	3+R	5.00	WT273	
6180.22	I/II	Kra	fat	UW	Damp	4	5.67	WT272	
6204.79	I/II	Kra	fat	UW	Dry	4	4.67	WT271	
6218.20	I/II	Kra	fat	UW	Damp	4	5.00	WT270	
6231.97	I/II	Kra	fat	UW	Dry	4	2.00	WT269	
6249.35	I/II	Kra	fat	UW	Dry	3	8.90	WT268	
6281.22	I/II	Kra	fat	UW	Dry	3+R	1.25	WT267	
6302.32	Ι	Kra	fat	UW	Dry	3	6.67	WT266	
6323.20	Ι	Kra	fat	UW	Dry	3	8.90	WT265	
6352.01	I/II	Kra	fat	UW	Minor Inflow	4	5.00	WT264	<5L/min
6395.05	I/II	Kra	fat	UW	Minor Inflow	4	4.00	WT262	<5L/min

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 9 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
6411.58	I/II	Kra	fat	UW	Minor Inflow	4	7.30	WT261	<5L/min
6421.27	Ι	Kra	fat	UW	Minor Inflow	4	2.00	WT260	<5L/min
6438.64	Ι	Kra	fat	UW	Minor Inflow	4	1.96	WT259	<5L/min
6461.58	I/II	Kra	fat	UW	Dry	4	1.37	WT258	
6499.09	I/II	Kra	fat	UW	Dry	4	2.50	WT257	
6502.15	I/II	Kra	fat	UW	Dry	4	2.00	WT256	
6524.71	I/II	Kra	fat	UW	Dry	4	0.80	WT255	highly fractured rock mass
6548.70	I/II	Kra	fat	UW	Dry	4	6.00	WT254	
6559.08	I/II	Kra	fat	UW	Dry	4	11.30	WT253	
6583.10	I/II	Kra	fat	UW	Dry	2	35.00	WT252	
6595.42	I/II	Kra	fat	UW	Dry	3	1.87	WT251	
6632.54	Ι	Kra	fat	UW	Dry	3	2.67	WT250	gf intrusion, highly fractured rock mass
6643.58	I/II	Kra	fat	UW	Dry	4	0.83	WT249	gf intrusion, highly fractured rock mass
6667.75	I/II	Kra	fat	UW	Minor Inflow	4	3.00	WT248	<5L/min
6675.88	I/II	Kra	fat	UW	Dry	4	8.67	WT247	
6691.09	Ι	Kra	fat	UW	Minor Inflow	3	3.06	WT246	<5L/min
6704.39	Ι	Kra	fat	UW	Minor Inflow	4	1.50	WT245	gf intrusion, <5L/min
6726.87	I/II	Kra	cat	UW	Dry	4	4.90	WT244	
6736.21	I/II	Kra	cat	UW	Minor Inflow	3+R	3.09	WT243	<5L/min
6761.93	I/II	Kra	cat	UW	Dry	3	7.80	WT242	gf intrusion
6771.05	I/II	Kra	cat	UW	Minor Inflow	3	2.68	WT241	<5L/min
6792.01	Ι	Kra	cat	UW	Minor Inflow	4	3.25	WT240	<5L/min
6798.01	Ι	Kra	cat	UW	Dry	4	3.25	WT239	
6817.49	Ι	Kra	cat	UW	Dry	3	8.30	WT238	
6831.00	Ι	Kra	cat	UW	Dry	2	13.30	WT237	
6842.50	Ι	Kra	cat	UW	Dry	3	20.00	WT236	
6856.29	Ι	Kra	cat	UW	Dry	3	20.00	WT235	pegmatite intrusion
6876.10	Ι	Klk	gm	UW	Dry	1	75.00	WT234	
6896.92	Ι	Klk	gm	UW	Dry	2	15.83	WT233	
6914.09	I	Klk	gm	UW	Dry	3	8.33	WT232	
6926.22	I	Klk	gm	UW	Dry	3	8.33	WT231	
6946.88	I	Klk	gm	UW	Dry	4	2.67	WT230	
6962.19	I	Klk	gm	UW	Dry	2	18.75	WT229	
6970.81	Ι	Klk	gm	UW	Dry	1	75.00	WT228	
6990.37	I	Klk	gm	UW	Dry	3+R	10.00	WT227	
6995.08	Ι	Klk	gm	UW	Dry	3	14.16	WT226	
7015.47	I	Klk	gm	UW	Dry	3	15.80	WT225	
7021.47	I	Klk	gm	UW	Dry	2	35.63	WT224	
7039.12	I	Klk	gm	UW	Dry	2	21.30	WT223	
7039.74	I	Klk	gm	UW	Dry	2	45.00	WT222	
7054.57	Ι	Klk	gm	UW	Dry	1	200.00	WT221	

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 10 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
7069.67	Ι	Klk	gm	UW	Dry	2	35.63	WT220	
7084.84	I/II	Klk	gm	UW	Dry	2	23.75	WT219	
7098.71	Ι	Klk	gm	UW	Dry	3	20.00	WT218	
7109.91	I/II	Klk	gm	UW	Dry	3+R	23.75	WT217	
7126.19	I/II	Klk	gm	UW	Dry	4	4.33	WT216	
7144.29	I/II	Klk	gm	UW	Dry	3	8.69	WT215	
7159.96	I/II	Klk	gm	UW	Dry	3	7.78	WT214	
7176.57	I/II	Klk	gm	UW	Dry	2+R	14.20	WT213	
7192.44	I/II	Klk	gm	UW	Dry	3	11.11	WT212	
7215.69	II	Klk	gm	UW	Minor Inflow	3	8.25	WT211	
7228.75	Ι	Klk	gm	UW	Dry	3	21.10	WT210	
7244.71	I/II	Klk	gm	UW	Dry	3+R	6.25	WT209	
7265.11	Ι	Klk	gm	UW	Dry	2+R	23.80	WT208	
7270.11	Ι	Klk	gm	UW	Dry	2	16.66	WT207	
7292.63	Ι	Klk	gm	UW	Dry	3	9.44	WT206	
7314.84	I/II	Klk	gm	UW	Dry	2+R	10.00	WT205	
7317.47	I/II	Klk	gm	UW	Minor Inflow	3	10.00	WT204	
7346.42	I/II	Klk	gm	UW	Dry	3	9.44	WT203	
7355.79	I/II	Klk	gm	UW	Dry	3	10.00	WT202	
7375.38	Ι	Klk	gm	UW	Dry	1+R	47.50	WT201	
7395.59	I/II	Klk	gm	UW	Dry	3	6.30	WT200	
7404.92	I/II	Klk	gfm	UW	Dry	2+R	22.50	WT199	
7422.01	I/II	Klk	gfm	UW	Dry	3	15.80	WT198	
7445.38	Ι	Klk	gfm	UW	Dry	1+R	100.00	WT197	
7456.72	Ι	Klk	gfm	UW	Dry	1+R	50.00	WT196	
7471.68	I/II	Klk	gfm	UW	Dry	1+R	100.00	WT195	
7488.80	Ι	Klk	gfm	UW	Dry	1+R	100.00	WT194	
7498.94	Ι	Klk	gfm	UW	Dry	3+R	13.30	WT193	
7531.29	I/II	Klk	gfm	UW	Dry	3+R	18.80	WT192	
7550.51	I/II	Krd/Klk	cat/gfm	UW	Dry	4	4.30	WT191	
7564.27	Ι	Krd/Klk	cat/gfm	UW	Dry	3	10.00	WT190	
7576.87	I/II	Krd/Klk	cat/gfm	UW	Dry	3+R	5.60	WT189	
7599.94	Ι	Krd/Klk	cat/gfm	UW	Dry	2+R	16.67	WT188	aplite vein
7628.51	Ι	Krd	cat	UW	Dry	3	33.30	WT187	
7629.56	Ι	Krd	cat	UW	Dry	2	74.50	WT186	
7635.64	Ι	Krd	cat	UW	Dry	2	11.25	WT185	
7655.01	Ι	Krd	cat	UW	Dry	3	22.20	WT184	aplite vein
7672.62	Ι	Krd	cat	UW	Dry	2+R	15.83	WT183	
7683.71	Ι	Krd	cat	UW	Dry	4	5.33	WT182	
7698.60	I	Krd	cat	UW	Dry	3	10.00	WT181	aplite vein
7718.80	Ι	Krd	cat	UW	Dry	1+R	66.67	WT180	gc intrusion

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 11 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
7722.12	Ι	Krd	cat	UW	Dry	2	100.00	WT179	
7731.51	Ι	Krd	cat	UW	Dry	2	75.00	WT178	aplite vein
7739.14	Ι	Krd	cat	UW	Dry	2	11.11	WT177	
7744.45	Ι	Krd	cat	UW	Dry	3	8.33	WT176	
7753.27	Ι	Krd	cat	UW	Dry	3	10.00	WT175	aplite vein
7768.36	I/II	Krd	cat	UW	Dry	4	6.33	WT174	
7779.71	I/II	Krd	cat	UW	Dry	3	9.44	WT173	
7786.12	Ι	Krd	cat	UW	Dry	2	22.50	WT172	
7791.01	Ι	Krd	cat	UW	Dry	2+R	14.20	WT171	
7799.02	I/II	Krd	cat	UW	Dry	2+R	14.20	WT170	
7817.87	I/II	Krd	fat & cat	UW	Dry	3+R	2.29	WT169	
7833.25	I/II	Krd	fat & cat	UW	Dry	3+R	2.71	WT168	
7864.06	I/II	Krd	fat & cat	UW	Dry	4	4.67	WT167	
7874.25	I/II	Krd	fat & cat	UW	Damp	4	2.33	WT166	
7882.31	I/II	Krd	fat & cat	UW	Damp	4	2.33	WT165	
7913.71	Ι	Krd	fat & cat	UW	Dry	2+R	25.00	WT164	
7918.71	Ι	Krd	fat & cat	UW	Dry	3	16.67	WT163	
7928.32	Ι	Krd	fat & cat	UW	Dry	2	25.00	WT162	
7935.36	Ι	Krd	fat & cat	UW	Dry	2+2R	16.70	WT161	
7942.14	Ι	Krd	fat & cat	UW	Dry	4	4.00	WT160	
7961.38	I/II	Krd	fat & cat	UW	Dry	3+R	5.72	WT159	
7976.89	Ι	Krd	fat & cat	UW	Dry	3	10.00	WT158	
7997.71	I	Krd	fat & cat	UW	Dry	2+R	30.00	WT157	
8011.37	Ι	Krd	fat & cat	UW	Dry	2+R	50.00	WT156	
8018.45	Ι	Krd	fat & cat	UW	Dry	2+R	47.50	WT155	
8031.74	I/II	Krd	fat & cat	UW	Dry	3	2.41	WT154	
8061.14	I/II	Krd	fat & cat	UW	Dry	3	8.89	WT153	
8061.86	I/II	Krd	fat & cat	UW	Dry	3	11.10	WT152	
8076.84	Ι	Krd	fat & cat	UW	Dry	2	25.00	WT151	
8095.37	Ι	Krd	fat & cat	UW	Dry	2	50.00	WT150	
8099.87	Ι	Krd	fat & cat	UW	Dry	2	50.00	WT149	
8110.56	I	Krd	fat & cat	UW	Dry	4	6.00	WT148	
8112.87	Ι	Krd	fat & cat	UW	Dry	3+R	15.00	WT147	
8123.04	Ι	Krd	fat & cat	UW	Dry	4	3.16	WT146	
8137.51	I/II	Krd	fat & cat	UW	Dry	3+R	1.81	WT145	
8147.30	I/II	Krd	fat & cat	UW	Dry	3	5.83	WT144	
8163.53	I	Krd	fat & cat	UW	Dry	2+R	14.20	WT143	
8187.02	I/II	Krd	fat & cat	UW	Dry	3+R	1.88	WT142	
8198.36	I/II	Krd	fat & cat	UW	Dry	3+R	1.83	WT141	
8236.51	Ι	Krd	fat & cat	UW	Dry	4	1.50	WT140	
8265.91	I/II	Krd	fat & cat	UW	Dry	3	7.78	WT139	

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 12 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
8286.20	I	Krd	fat & cat	UW	Dry	2+R	12.50	WT138	
8319.36	I/II	Krd	fat & cat	UW	Damp	4	0.33	WT137	Shear zone
8350.73	I/II	Krd	fat & cat	UW	Dry	4	50.00	WT136	
8364.10	I/II	Krd	fat & cat	UW	Dry	4	15.00	WT135	
8376.17	I/II	Krd	fat & cat	UW	Minor Inflow	3+R	4.70	WT134	<5L/min
8413.60	I/II	Krd	fat & cat	UW	Minor Inflow	3+R	12.50	WT133	
8439.59	I/II	Krd	fat & cat	UW	Minor Inflow	3+R	2.92	WT132	
8456.86	I/II	Krd	fat & cat	UW	Minor Inflow	4	7.56	WT131	
8460.99	I/II	Krd	fat & cat	UW	Minor Inflow	4	4.67	WT130	
8489.82	I/II	Krd	fat & cat	UW	Minor Inflow	4	10.00	WT129	
8502.21	I/II	Krd	fat & cat	UW	Minor Inflow	3	16.67	WT128	
8539.76	I/II	Krd	fat & cat	UW	Minor Inflow	3	10.56	WT127	
8560.31	I/II	Krd	fat & cat	UW	Dry	2+R	21.10	WT126	
8570.47	I/II	Krd	fat & cat	UW	Dry	2+R	42.22	WT125	
8589.54	I/II	Krd	fat & cat	UW	Dry	2+R	10.60	WT124	
8591.61	I/II	Krd	fat & cat	UW	Dry	2+R	23.80	WT123	
8616.25	I/II	Krd	fat & cat	UW	Minor Inflow	3+R	7.90	WT122	
8624.35	I/II	Krd	fat & cat	UW	Dry	3+R	11.90	WT121	
8640.50	I/II	Krd	fat & cat	UW	Dry	4	9.50	WT120	
8649.93	I/II	Krd	fat & cat	UW	Dry	4	6.00	WT119	
8662.73	I/II	Krd	fat & cat	UW	Dry	3+R	11.90	WT118	
8689.73	I/II	Krd	fat & cat	UW	Dry	2+R	23.80	WT117	
8707.57	I/II	Krd	fat & cat	UW	Dry	3+R	11.30	WT116	
8724.04	I/II	Krd	fat & cat	UW	Dry	4	6.00	WT115	
8740.96	I/II	Krd	fat & cat	UW	Dry	4	2.67	WT114	
8761.83	I/II	Krd	fat & cat	UW	Dry	4	5.67	WT113	
8786.16	I/II	Krd	fat & cat	UW	Dry	4	8.50	WT112	
8805.01	I/II	Krd	fat & cat	UW	Dry	4	6.00	WT111	
8832.65	I/II	Krd	fat & cat	UW	Dry	4	2.40	WT110	Shear plane
8842.43	II	Krd	fat & cat	UW	Damp	4	1.42	WT109	
8868.61	I/II	Krd	fat & cat	UW	Damp	4	2.25	WT108	
8895.28	I/II	Krd	fat & cat	UW	Dry	4	1.50	WT107	
8919.69	I/II	Krd	fat & cat	UW	Dry	4	1.25	WT106	granite vein
8952.53	I/II	Krd	fat & cat	UW	Minor Inflow	4	1.17	WT105	<5L/min
8974.96	П	Krd	fat & cat	UW	Wet	4	3.30	WT104	>5L/min
8989.83	П	Krd	fat & cat	UW	Wet	4	0.06	WT103	>5L/min
8994.22	П	Krd	fat & cat	UW	Damp	4	0.07	WT102	fault breccia, fault gouge (50/140-170)
9000.22	П	Krd	fat & cat	UW	Minor Inflow	4	0.03	WT101	Shear zone, <5L/min
9011.04	П	Krd	fat & cat	UW	Wet	4	0.13	WT100	Shear zone, >5L/min
9028.78	П	Krd	fat & cat	UW	Minor Inflow	4	0.80	WT099	Shear zone, <5L/min
9041.32	П	Krd	fat & cat	UW	Minor Inflow	3+R	1.00	WT098	Shear zone, <5L/min

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 13 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
9057.56	II/III	Krd/Klk	fat & cat/gf	UW	Minor Inflow	4	0.40	WT097	Contact zone, <5L/min
9071.16	I/II	Klk	gf	UW	Minor Inflow	3+R	10.00	WT096	Shear zone, <5L/min
9089.29	I/II	Klk	gf	UW	Dry	3	10.00	WT095	
9104.03	I/II	Klk	gf	UW	Damp	4	6.00	WT094	
9130.84	I/II	Klk	gf	UW	Minor Inflow	3+R	15.83	WT093	<5L/min
9140.36	I/II	Klk	gf	UW	Minor Inflow	3	9.44	WT092	<5L/min
9153.71	I/II	Klk	gf	UW	Damp	3+R	8.33	WT091	
9185.26	I/II	Klk	gf	UW	Minor Inflow	3+R	25.00	WT090	<5L/min
9196.77	I/II	Klk	gf	UW	Minor Inflow	3	31.70	WT089	<5L/min
9216.71	I/II	Klk	gf	UW	Minor Inflow	3	22.22	WT088	<5L/min
9237.88	I/II	Klk	gf	UW	Damp	3+R	15.00	WT087	
9261.31	I/II	Klk	gf	UW	Damp	4	6.00	WT086	
9264.65	I/II	Klk	gf	UW	Damp	3+R	22.50	WT085	
9276.03	I/II	Klk	gf	UW	Minor Inflow	3+R	12.50	WT084	<5L/min
9293.26	I/II	Klk	gf	UW	Minor Inflow	3+R	11.25	WT083	<5L/min
9302.35	Ι	Klk	gf	UW	Minor Inflow	3+R	33.33	WT082	<5L/min
9309.15	I/II	Klk	gf	UW	Minor Inflow	3	16.70	WT081	<5L/min
9315.17	I/II	Klk	gf	UW	Minor Inflow	3	22.22	WT080	<5L/min
9342.77	I/II	Klk	gf	UW	Damp	4	9.60	WT079	Shear zone
9359.70	I/II	Klk	gf	UW	Minor Inflow	3+R	12.00	WT078	<5L/min
9369.94	I/II	Klk	gf	UW	Minor Inflow	3	10.56	WT077	<5L/min
9400.00	I/II	Klk	gf	UW to PW90/100	Damp	3+R	10.00	WT076	Minor shear zone
9409.00	I/II	Klk	gf	UW to PW90/100	Dry	4	7.20	WT075	Minor shear zone
9439.03	I/II	Klk	gf	UW to PW90/100	Damp	3+R	6.67	WT074	Minor shear zone
9453.10	I/II	Klk	gf	UW to PW90/100	Damp	3+R	2.38	WT073	Minor shear zone
9487.15	II	Klk	gf	UW to PW90/100	Minor Inflow	3	2.25	WT072	Shear zone, <5L/min
9507.92	II	Klk	gf	UW to PW90/100	Minor Inflow	3	2.07	WT071	Fault gouge, <5L/min
9510.88	II	Klk	gf	UW to PW90/100	Minor Inflow	3	2.83	WT070	Minor fault zone, <5L/min
9513.92	II	Klk	gf	UW to PW90/100	Minor Inflow	4	0.93	WT069	Shear zone, <5L/min
9516.89	II	Klk	gf	UW to PW90/100	Minor Inflow	3+R	3.20	WT068	Shear zone, <5L/min
9534.90	II	Klk	gf	UW to PW90/100	Minor Inflow	3+R	1.50	WT067	Shear zone, <5L/min
9550.23	II/III	Klk	gf	UW to PW90/100	Minor Inflow	4	1.60	WT066	Minor fault zone, shear zone, <5L/min
9568.20	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.80	WT065	Shear zone, <5L/min
9580.28	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	2.83	WT064	Shear zone, <5L/min
9600.98	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.60	WT063	Shear zone with highly fractured rock mass, <5L/min
9616.24	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	2.27	WT062	Shear zone with highly fractured rock mass, <5L/min
9646.10	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.70	WT061	Shear zone with highly fractured rock mass, <5L/min
9676.92	I/II	Klk	gf	UW to PW90/100	Dry	4	1.33	WT060	Shear zone with highly fractured rock mass
9706.51	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.70	WT059	Shear zone with highly fractured rock mass, <5L/min
9731.90	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.60	WT058	Shear zone with highly fractured rock mass, <5L/min
9745.34	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.70	WT057	Shear zone with highly fractured rock mass, <5L/min

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 14 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
9761.40	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	2.27	WT056	Shear zone with highly fractured rock mass, <5L/min
9767.40	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	2.40	WT055	Shear zone with highly fractured rock mass, <5L/min
9789.80	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.73	WT054	Shear zone with highly fractured rock mass, <5L/min
9795.80	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	2.40	WT053	Shear zone with highly fractured rock mass, <5L/min
9819.32	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	2.00	WT052	Shear zone with highly fractured rock mass, <5L/min
9825.32	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.04	WT051	Shear zone with highly fractured rock mass, <5L/min
9839.84	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	0.80	WT050	Shear zone with highly fractured rock mass, <5L/min
9886.75	I/II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.60	WT049	Shear zone with highly fractured rock mass, <5L/min
9881.58	I/II	Klk	gf	UW to PW90/100	Dry	4	0.35	WT048	Shear zone with highly fractured rock mass
9896.20	II	Klk	gf	UW to PW90/100	Dry	4	0.80	WT047	Shear zone with highly fractured rock mass
9907.42	II	Klk	gf	UW to PW90/100	Minor Inflow	4	1.20	WT046	Shear zone with highly fractured rock mass, <5L/min
9937.86	II/III	Klk	gf	UW to PW90/100	Minor Inflow	4	0.13	WT045	Fault breccia, <5L/min
9945.92	Π	Klk	gf	UW to PW90/100	Minor Inflow	5	0.13	WT044	Shear zone with highly fractured rock mass, <5L/min
9964.11	II	Klk	gf	UW to PW90/100	Minor Inflow	4	0.60	WT043	Shear zone with highly fractured rock mass, <5L/min
9991.15	II	Klk	gf	UW to PW90/100	Minor Inflow	4	0.60	WT042	Shear zone with highly fractured rock mass, <5L/min
9991.26	II	Klk	gf	UW to PW90/100	Minor Inflow	4	0.60	WT041	Shear zone with highly fractured rock mass, <5L/min
10013.60	II	Klk	gf	UW to PW90/100	Minor Inflow	5	0.60	WT040	Shear zone with highly fractured rock mass, <5L/min
10028.60	II	Krd/Klk	fat & cat/gf	UW to PW90/100	Minor Inflow	4	0.20	WT039	Shear zone with highly fractured rock mass, <5L/min
10034.60	II/III	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	5	0.05	WT038	Shear zone with highly fractured rock mass
10054.20	II/III	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	4	0.50	WT037	Shear zone with highly fractured rock mass
10066.60	II/III	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	7	0.13	WT036	Shear zone with highly fractured rock mass
10083.90	II	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	4	0.33	WT035	Shear zone with highly fractured rock mass
10106.40	II	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	5	2.20	WT034	Shear zone with highly fractured rock mass
10108.70	II	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	4	0.10	WT033	Shear zone with highly fractured rock mass
10135.00	II	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	5	0.03	WT032	Shear zone with highly fractured rock mass
10158.90	II	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	5	0.09	WT031	Shear zone with highly fractured rock mass
10174.40	II/III	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	4	0.05	WT030	Shear zone with highly fractured rock mass
10180.30	II/III	Krd/Klk	fat & cat/gf	UW to PW90/100	Dry	4	0.04	WT029	Shear zone with highly fractured rock mass
10187.50	II/III	Krd/Klk	fat & cat/gf	UW to PW90/100	Minor Inflow	4	0.10	WT028	Shear zone with highly fractured rock mass, <5L/min
10199.00	II/III	Krd	fat & cat	UW to PW90/100	Minor Inflow	4	0.13	WT027	Shear zone with highly fractured rock mass, <5L/min
10224.40	II/III	Krd	fat	UW to PW90/100	Dry	4	0.15	WT026	Shear zone with highly fractured rock mass, g & p intrusions
10225.40	II/III	Krd	fat	UW to PW90/100	Minor Inflow	3	0.17	WT025	Shear zone with highly fractured rock mass, g & p intrusions
10231.10	II/III	Krd	fat	UW to PW90/100	Minor Inflow	4	0.10	WT024	Shear zone with highly fractured rock mass, g & p intrusions
10249.60	II/III	Krd	fat	UW to PW90/100	Minor Inflow	5	0.20	WT023	Shear zone with highly fractured rock mass, g & p intrusions
10259.80	П	Krd	fat	UW to PW90/100	Minor Inflow	6	0.30	WT022	Shear zone with highly fractured rock mass, g & p intrusions
10265.60	II/III	Krd	fat	UW to PW90/100	Minor Inflow	5	0.30	WT021	Shear zone with highly fractured rock mass, g & p intrusions
10276.20	II/III	Krd	fat	UW to PW90/100	Minor Inflow	4	0.09	WT020	Shear zone with highly fractured rock mass, g & p intrusions
10283.70	II/III	Krd	fat	UW to PW90/100	Minor Inflow	4	0.07	WT019	Shear zone with highly fractured rock mass, g & p intrusions
10295.50	II/III	Krd	fat	UW to PW90/100	Minor Inflow	4	0.09	WT018	Shear zone with highly fractured rock mass, g & p intrusions
10302.20	II/III	Krd	fat	UW to PW90/100	Minor Inflow	4	0.07	WT017	Shear zone with highly fractured rock mass, g & p intrusions
10307.60	II/III	Krd	fat	UW to PW90/100	Minor Inflow	4	0.07	WT016	Shear zone with highly fractured rock mass, g & p intrusions

Table A Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 15 of 16)

Chainage	Rock grade	Rock formation	Rock type	Rock mass	Water Inflow	Discontinuity Sets	Q value	Mapping Record No.	Remarks
10312.50	II/III	Krd	fat	UW to PW90/100	Minor Inflow	4	0.07	WT015	Shear zone with highly fractured rock mass, g & p intrusions
10342.20	II/III	Krd	fat	UW to PW90/100	Minor Inflow	5	0.25	WT014	Shear zone with highly fractured rock mass, g & p intrusions
10375.50	II	Krd	fat	UW to PW90/100	Dry	4	0.30	WT013	Shear zone with highly fractured rock mass, g & p intrusions
10395.00	II/III	Krd	fat	UW to PW90/100	Dry	4	0.25	WT012	Shear zone with highly fractured rock mass, g & p intrusions
10409.60	II/III	Krd	cat	UW to PW90/100	Dry	4	0.10	WT011	Shear zone with highly fractured rock mass, g intrusions
10428.20	II	Krd	cat	UW to PW90/100	Minor Inflow	4	0.25	WT010	Shear zone with highly fractured rock mass, g intrusions
10448.70	II/III	Krd	cat	UW to PW90/100	Dry	4	0.25	WT009	Shear zone with highly fractured rock mass, g intrusions
10452.30	II	Krd	cat	UW to PW90/100	Dry	4	0.25	WT008	Shear zone with highly fractured rock mass, g intrusions
10462.10	II/III	Krd	cat	UW to PW90/100	Dry	4	0.30	WT007	Shear zone with highly fractured rock mass, g intrusions
10470.10	II	Krd	cat	UW to PW90/100	Dry	4	1.30	WT006	Shear zone with highly fractured rock mass, g intrusions
10481.80	II/III	Krd	cat	UW to PW90/100	Dry	4	2.00	WT005	Shear zone with highly fractured rock mass, g intrusions
10493.80	II/III	Krd	cat	UW to PW90/100	Dry	4	1.20	WT004	Shear zone with highly fractured rock mass, g intrusions
10506.40	II/III	Krd	cat	UW to PW90/100	Dry	4	0.60	WT003	Shear zone with highly fractured rock mass, g intrusions
10516.40	II/III	Krd	cat	UW to PW90/100	Dry	4	0.60	WT002	Shear zone with highly fractured rock mass, g intrusions
10520.62	II/III	Krd	cat	UW to PW90/100	Dry	4	1.20	WT001	Shear zone with highly fractured rock mass, g intrusions
10535.00	II/III	Krd	cat	-	Dry	5	2.52	-	Shear zone with highly fractured rock mass, g intrusions
10583.00	II/III	Krd	cat	-	Dry	5	2.52	-	Shear zone with highly fractured rock mass, g intrusions

 Table A
 Summary of Engineering Geological Data (after DNJV, 2011) (Sheet 16 of 16)

Appendix B

Summary of Rock Discontinuity Data

Starting	Ending	Rock Type	Dip (°)	Dip Direction (°)	Spacing	Aperture	Infilling	
Chainage (m)	Chainage (m)		45.00	225 255				
CII 190	CH 200	Cuanita	45-90	323-333				
CH 180	СП 290	Granite	/3-90	205 225	Very closely to	Tight to		
			0-20	295-325	widely closely to	extremely	Staining	
CH 200	CH 400	Cranita	/3-90	330-000	wheely spaced	narrow		
CH 290	CH 400	Granite	20.40	205.225	-			
			20-40	295-325				
CH 400	CH 500	Cranita	70-85	300-330	-			
CH 400	СП 300	Granite	70-85	210-240	Very closely to	Tight to		
			70-90	200, 220	medium spaced	extremely	Non-clay	
CH 500	CH 600	Granite	×5.00	200.260	inculum spueed	narrow		
CH 500	CH 000	Granite	20.45	200-200				
			70.93	220-310				
CH 600	CH 620	Granite	70-83	320-330				
CII 000	CH 020	Granite	70-85	030.070				
			/0-90	200, 220		Tight to		
CH 620	СН 720	Granite	85.00	290-320	Very closely to	extremely	Staining	
CII 020	CH /20	Granite	75.80	210-240	medium spaced	narrow		
			75.85	240.010		narrow		
СН 720	CH 900	Granite	70.00	260,200				
CII 720	CH 800	Granite	70-90 85.00	200-290				
			75.00	220-230				
CH 800	CH 900	Granite	75.90	200-290				
CII 800	CII 900	Granite	73-90	005.025	Very closely to	Tight to		
			75.00	205 225	medium spaced	extremely	Non-clay	
CH 900	CH 1000	Granite	75.90	245 270	medium spaced	narrow		
CII 900	CII 1000	Granite	75.00	155 105				
			75.90	260,200				
CH 1000	CH 1090	Granite	75.00	200-290	-			
011 1000	СП 1090	Granite	75.00	350.020	Closely to	Tight	Non-clay	
			75-90	260-290				
CH 1090	CH 1200	Granite	75.00	350.020	what is proved			
011 1050	CH 1200	Granite	75.00	005.035				
			75-90	260-290				
CH 1200	СН 1295	Granite	75.00	065.005				
CII 1200	011 1295	Granite	60.75	335.005	Closely to	Tight to		
			75-90	200-230	medium spaced	extremely	Staining	
CH 1295	CH 1400	Granite	75.00	265 200	ine aiain spacea	narrow		
011 1275	011 1400	Granite	75-90	205-290				
			75-90	020-050				
CH 1400	CH 1490	Granite	75.00	200.320				
CII 1400	CII 1490	Granite	75.90	290-320	Closely to	Tight to		
			75.00	105 225	widely spaced	extremely	Staining	
CH 1400	CH 1600	Granite	75.00	030.040	waely spaced	narrow		
CH 1490	CH 1000	Granite	75.00	200, 200				
			75-90	290-300				
CH 1600	CH 1605	Granita	75.00	240-270				
CH 1600	011 1095	Jianit	75.00	500-550 150 190	1	Tight to		
			75.00	200 220	Closely to	i igiii io	Non-clay	
СН 1695			60.75	290-320	- widely spaced	d extremely	Non-clay	
	CH 1800	CH 1800 Granite	Granite 60-7	75 00	260.200		narrow	
			75-90	200-290	-			
			/5-90	230-230				

Starting Chainage (m)	Ending Chainage (m)	Rock Type	Dip (°)	Dip Direction (°)	Spacing	Aperture	Infilling
enumage (iii)	chanage (iii)		75-90	180-210			
CH 1800	CH 1895	Granite	70-90	270-300		Tight to	
			60-75	120-150	Very closely to	extremely	Staining
			40-85	270-300	widely spaced	narrow	8
CH 1895	CH 2000	Granite	75-90	200-230			
			60-85	030-060			
			60-90	120-130			
			60-90	290-320			
CH 2000	CH 2095	Granite	75-90	200-230			
			75-90	020-050		Tight to	
			40-75	350-350	Closely to medium spaced	extremely narrow	Clav
			60-90	103-135			5
			60-90	312-345			
CH 2095	CH 2200	Granite	60-75	160-190			
			75-90	210-280			
			75-90	230-260			
			60-90	260-290			
			75-90	220-250			
		~ .	75-90	040-070	-		
CH 2200	CH 2290	Granite	75-90	140-170		Tight to	
			75-90	300-330	Very closely to	extremely	Non-clay
			20-40	080-110	medium spaced	narrow	
			75-90	345-015			
CH 2290	CH 2400	2400 Granite	75-90	270-300	1		
			75-90	200-300			
	СН 2495		75-90	235-265			
CH 2400		Granite	75-90	160-190			
			20-40	040-070			
			75-90	250-280		Tight to	
			75-90	040-100	Closely to	extremely	Non-clay
		~ .	60-85	180-210	widely spaced	narrow	5
CH 2495	CH 2600	Granite	60-90	220-250			
			60-90	040-070			
			40-75	320-330			
			75-90	280-310			
CH 2600	CH 2695	Granite	60-90	020-050			
			60-75	220-250		Tight to	
			75-90	005, 185	Closely to	extremely	Non-clay
CTT 2 (0.5	GIL 2000	a .	75-90	095, 275	widely spaced	narrow	
CH 2695	CH 2800	Granite	75-90	020, 200			
CH 2800 CH 2895			20-40	020-050			
			20-60	185-215			
	OH 2005	A	20-40	245-275	1		
	CH 2895	Granite	45-90	320-350	1		
			45-90	140-170	Closely to	Tight to	NT 1
		3000 Granite	50-75	340-010	medium spaced	ed extremely narrow	Non-clay
	СН 3000		10-30	220-250			
			70-90	280-310	1		

70-90

045-095

 Table B
 Summary Rock Discontinuity Data (Sheet 2 of 9)

Channage (m) Channage (m) Close (m)	Starting	Ending	Rock Type	Dip (°)	Dip Direction (°)	Spacing	Aperture	Infilling
CH 3000 CH 3100 Granite 75-300 165-215 (75-30) Chesely to vikely spaced Tight to extremely narrow Staining and staining CH 3100 CH 3200 Granite 75-30 202-30 Chesely to vikely spaced Tight to extremely narrow Staining CH 3100 CH 3200 Granite 60-30 355-005 60-30 Staining CH 3200 CH 3400 Granite 60-30 155-185 Staining CH 3200 CH 3400 Granite 75-30 245-275 Granite Tight to extremely narrow Staining CH 3300 CH 3400 Granite 75-30 200-200 Clessely to vikely spaced Tight to extremely narrow Staining CH 3300 CH 3400 Granite 75-30 200-230 Clessely to vikely spaced Tight to extremely narrow Staining CH 3500 CH 3600 Granite 75-30 200-230 Clessely to vikely spaced Tight to extremely narrow Staining CH 3700 CH 3800 Granite 75-30 350-020 Staining	Chainage (m)	Chainage (m)	~ 1	75.00	005.025		•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				/5-90	005-035	-		
CH 3000 CH 3100 Ch 3100 Ch 3100 Ch 3100 Ch 3200 Granite 75-90 Closely to widely spaced Tight to extremely marrow Staining CH 3100 CH 3200 Granite 75-90 200-230 Closely to widely spaced Tight to extremely marrow Staining CH 3200 CH 3200 Granite 60-90 355-05 Closely to widely spaced Tight to extremely marrow Staining CH 3200 CH 3400 Granite 75-90 245-275 Mediam to very widely spaced Tight to extremely narrow Staining CH 3400 CH 3500 Granite 75-90 240-230 Closely to widely spaced Tight to extremely narrow Non-clay CH 3600 CH 3600 Granite 75-90 230-230 Closely to widely spaced Tight to extremely narrow Staining CH 3600 CH 3700 Granite 75-90 230-230 Weiley spaced Tight to extremely narrow Staining CH 3600 CH 3700 Granite 75-90 230-230 Closely to narrow Staining	CH 2000	CH 2100	Caracita	/5-90	185-215	-		
00-73 305-333 C.888 (w) extremely Staining CH 3100 CH 3200 Granite 75-90 0065-005 widely spaced narrow Staining CH 3100 CH 3200 Granite 60-90 335-005 widely spaced narrow Staining CH 3200 CH 3300 Granite 75-90 160-190 marrow Staining CH 3400 CH 3400 Granite 75-90 160-190 marrow Staining CH 3400 CH 3500 Granite 75-90 160-190 marrow Staining CH 3400 CH 3500 Granite 75-90 200-230 marrow Staining 75-90 040-60 2245-275 Mediam to werk widely spaced marrow Non-clay CH 3600 CH 3600 Granite 75-90 107-200 widely spaced marrow Staining CH 3600 CH 3700 Granite 75-90 170-200 marrow Staining CH 3600 CH 3940 Granite<	CH 3000	CH 3100	Granite	/5-90	2/5-305	Closekyte	Tight to	
CH 3100 CH 3200 Granite 75-90 005:035 (75-90 006:035 (75-90 006:0				0.20	305-335	vidah spaced	extremely	Staining
CH 3100 CH 3200 Granite 75-90 200-230 75-90 005-095 60-90 335-005 60-90 155-185 75-90 245-275 60-90 155-185 75-90 245-275 CH 3300 CH 3400 Granite 75-90 166-190 widely spaced Tight to extremely widely spaced Staining marrow CH 3400 CH 3500 Granite 75-90 040-070 75-90 166-190 marrow Non-clay CH 3400 CH 3500 Granite 75-90 020-020 marrow Non-clay Tight to extremely marrow Non-clay CH 3400 CH 3600 Granite 75-90 200-230 Tight to extremely marrow Non-clay CH 3600 CH 3600 Granite 75-90 202-230 Tight to extremely marrow Staining marrow CH 3600 Granite 75-90 320-350 Tight to extremely marrow Staining marrow CH 3800 Granite 75-90 230-260 Medium to wikely spaced Tight to extremely marrow				0-20	185-215	whicely spaced	narrow	
CH 3200 CH 3200 Came 75:90 200:230 CH 3200 CH 3300 Granite 60:90 335:005 60:90 istining CH 3200 CH 3300 Granite 75:90 125:185 medium to very widely spaced Tight to extremely indely spaced Staining CH 3300 CH 3400 Granite 75:90 220:200 20:40:070 Tight to extremely indely spaced Tight to extremely indely spaced Staining CH 3400 CH 3500 Granite 75:90 200:230 Closely to widely spaced Tight to extremely indely spaced Tight to extremely indely spaced Staining CH 3600 CH 3700 Granite 75:90 200:230 Closely to widely spaced Tight to extremely indely spaced Staining CH 3600 CH 3700 Granite 75:90 275:00 10:400 Tight to extremely indely spaced Tight to extremely indely spaced Staining CH 3600 CH 3700 Granite 75:90 230:260 Closely to extremely wide spaced Tight to extremely in arrow Staining	CH 2100	CH 2200	Granita	75-90	005-035	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 3100	СП 3200	Granite	/5-90	200-230	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				/3-90	225.005			
CH 3200 CH 3300 Granite 10.90 12.9183 Mediam to very widely spaced Tight to extremely marrow Staining CH 3300 CH 3400 Granite 90 350.020 Mediam to very widely spaced Tight to extremely marrow Staining CH 3400 CH 3500 Granite 75.90 230.260 Closely to widely spaced Tight to extremely marrow Non-clay marrow CH 3500 CH 3600 Granite 75.90 200-230 Closely to widely spaced Tight to extremely marrow Non-clay marrow CH 3500 CH 3600 Granite 75.90 100-140 Tight to extremely marrow Non-clay marrow CH 3600 CH 3700 Granite 75.90 102-020 Wedium to widely spaced Tight to extremely marrow Staining marrow CH 3700 CH 3800 Granite 75.90 102-020 Wedium to widely spaced Tight to extremely marrow Staining marrow CH 3800 CH 3800 Granite 75.90 175.90 200-230 Mediam to extremely marrow Staining marow Staining marrow				60.00	155 185	-		
CH 300 CH 3400 Granite 75-90 125-155 Medium to very wikely spaced extremely narrow Staining CH 3400 CH 3400 Granite 75-90 160-190 wikely spaced retremely narrow Staining CH 3400 CH 3500 Granite 75-90 040-070 75-90 200-203 retremely in wikely spaced Tight to extremely in arrow Non-clay CH 3500 CH 3600 Granite 75-90 200-230 75-90 200-230 retremely in arrow Non-clay CH 3600 CH 3700 Granite 75-90 200-320 retremely in arrow Non-clay CH 3600 CH 3700 Granite 75-90 350-020 Wedium to wikely spaced Tight to extremely in arrow Staining CH 3800 CH 3800 Granite 75-90 350-020 Wedium to extremely wike Tight to extremely in arrow Staining CH 3800 CH 3940 Granite 75-90 245-275 extremely wike spaced Tight to extremely in arrow Staining CH 3	CH 3200	CH 3300	Granite	75.00	245 275		Tight to	
CH 3300 CH 3400 Granite 75-90 125-120 166-190 wilely spaced marrow marrow CH 3400 CH 3400 Granite 75-90 230-260 20-40 266-190 narrow narrow Non-clay CH 3400 CH 3500 Granite 75-90 230-260 20-40 266-0290 75-90 200-230 retremely narrow Non-clay CH 3500 CH 3600 Granite 75-90 200-230 retremely narrow Non-clay CH 3600 CH 3700 Granite 75-90 200-320 retremely narrow Staining CH 3700 CH 3800 Granite 75-90 350-020 Medium to widely spaced Tight to extremely staining CH 3800 CH 3940 Granite 75-90 350-020 retremely narrow Staining CH 3800 CH 3940 Granite 75-90 280-300 retremely spaced retremely staining CH 3940 CH 3985 <td< td=""><td></td><td></td><td></td><td>60-75</td><td>125-155</td><td rowspan="3">Medium to very widely spaced</td><td>extremely</td><td>Staining</td></td<>				60-75	125-155	Medium to very widely spaced	extremely	Staining
CH 3300 CH 3400 Granite 75.90 350-100 Mathematication CH 3400 CH 3500 Granite 75.90 240-020 Closely to widely spaced Tight to extremely narrow Staining narrow CH 3500 CH 3600 Granite 75.90 200-030 Widely spaced Tight to extremely narrow Non-clay narrow CH 3500 CH 3600 Granite 75.90 200-320 Widely spaced Tight to extremely narrow Staining narrow CH 3600 CH 3700 Granite 75.90 200-320 Medium to widely spaced Tight to extremely narrow Staining narrow CH 3600 CH 3800 Granite 75.90 200-320 Medium to extremely wide spaced Tight to extremely narrow Staining narrow CH 3700 CH 3800 Granite 75.90 230-200 Staining narrow Staining narrow CH 3800 CH 3940 Granite 75.90 230-200 Staining narrow Staining narrow CH 3940 CH 3985 Granite 75.90 280-300 Staining narrow				75-90	160-190		narrow	Sturning
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 3300	CH 3400	Granite	90	350-020			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	011 5500	011 5 100	Grunne	40-60	245-275			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	СН 3400			75-90	040-070			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CH 3500	Granite	75-90	230-260			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				20-40	260-290		Tight to	
CH 3500 CH 3600 Granite 75-90 200-230 widely spaced narrow narrow CH 3600 CH 3600 Granite 75-90 110-140 narrow Staining CH 3600 CH 3700 Granite 75-90 350-020 Medium to widely spaced marrow Staining CH 3700 CH 3800 Granite 75-90 350-020 Medium to extremely wide spaced narrow Staining CH 3800 CH 3940 Granite 75-90 170-200 75-90 280-300 row narrow Staining CH 3940 CH 3985 Granite 75-90 280-300 rosoo 280-300 rosoo 280-30			Granite	75-90	020-030	Closely to	extremely	Non-clay
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CTT 0.500	CILL & COO		75-90	200-230	widely spaced	narrow	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CH 3500	CH 3600		75-90	110-140			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	290-320			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	075-105			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 3600	CH 2700	с <i>і</i>	75-90	320-350			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		CH 3/00	Granite	75-90	040-070		Tight to	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				20-40	225-255	Medium to	extremely	Staining
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	170-200	widely spaced	narrow	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 3700	CH 3800	Granite	75-90	350-020]		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0-20	230-260			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Granite	75-90	065-095	Madium to	Tight to extremely narrow	Staining
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 3800	CH 3940		75-90	245-275	Medium to extremely wide		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 5600	011 3740		75-90	350-020			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	290-320	spacea	marrow	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	170-200			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 3940	CH 3985	Granite	75-90	280-300		Tight to	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	290-320	Closely to	extremely	Staining
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	170-200	medium spaced	narrow	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 3985	CH 4000	Granite	75-90	280-300			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	290-320			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				60-75	306-336	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 4000	CH 4100	Volcanic	75-90	096-126	4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	176-206		Tight to	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				60-75	100-130	Closely to	extremely	Staining
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0-20	006-036	medium spaced	narrow	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 4100	CH 4200	Volcanic	40-60	186-216	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				75-90	096-126	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH 4200 CH 4300			75-90	306-336			
CH 4200 CH 4300 Volcanic 75-90 300-336 Tight to 40-60 306-006 Closely to Tight to extremely Staining				0-20	036-066	4		
40-60 306-006 Closely to Tight to 0-20 126-156 medium spaced Staining		CH 4300	Volcanic	/5-90	306-336	-		
40-00 060-096 Closely to medium spaced extremely Staining				40-60	306-006	Closely to	Tight to	
0-20 120-130 inclum spaced				40-60	126 156	medium spaced	extremely	Staining
60.75 216.246 Narrow		СН 4400	00 Volcanic	60.75	216 246	medium spaced	ed extremely narrow	Stanning
CH 4300 CH 4400 Volcanic <u>60.75</u> 210-240				60.75	210-240			
75-90 1/1 171				75 00	141 171	1		

 Table B
 Summary Rock Discontinuity Data (Sheet 3 of 9)

	v		v	× ×	,		
Starting Chainage (m)	Ending Chainage (m)	Rock Type	Dip (°)	Dip Direction (°)	Spacing	Aperture	Infilling
			0-20	156-216			
CH 4400	CH 4500	Volcanic	75-90	156-186			
			75-90	246-306		Tight to	
			75-90	306-336	Closely to	extremely	Staining
CII 4500	CII 4600	V - 1 · ·	75-90	246-276	medium spaced	narrow	
CH 4500	CH 4600	voicanic	40-60	066-096			
			0-20	096-126			
			75-90	306-336			
CH 4600	CH 4700	Volcanic	75-90	156-186		Tight to	
			0-20	194-224	Cleashy to		
			75-90	194-254	Closely to	extremely	Staining
CH 4700	CH 4800	Volcanic	75-90	254-314	medium spaced	narrow	
СП 4700	011 4000	volcanic	75-90	314-014			
			0-20	194-224			
			0-20	186-216			
CH 4800	CH 4900	Volcanic	75-90	111-141	Closely to medium spaced		
			75-90	186-216		Tight to extremely narrow	Staining
			75-90	203-233			
CH 4900	CH 5000	Volcanic	75-90	263-293			
011 4900	011 5000	volcanic	75-90	143-173			
			0-20	323-023			
			75-90	173-203			
CH 5000	CH 5100	Volcanic	75-90	143-203			
011 5000	011 5100	volcanie	20-40	083-113	Closely to	Tight to	
			20-60	263-293	medium spaced	extremely	Staining
			75-90	143-173	mediam spaced	narrow	
CH 5100	CH 5200	Volcanic	60-90	203-233			
СН 5200			0-20	248-278			
			75-90	321-351			
	СН 5300	Volcanic	40-75	171-201			
	011 5500	Volcame	40-60	261-291	Closely to	Tight to	
			75-90	051-081	medium spaced	to paced extremely narrow	Staining
СН 5300	СН 5400	Volcanic	75-90	021-051	medium spueed		
			60-90	306-336			

 Table B
 Summary Rock Discontinuity Data (Sheet 4 of 9)

CH 5300	CH 5400	Volcanic	60-90	306-336			
			0-20	351-021			
			60-75	201-231			
CH 5400	CH 5500	Volcanic	75-90	231-261	Closely to		
CII 5400	C11 5500	volcanic	60-75	081-111		Tight to extremely narrow	Staining
			0-40	261-291			
	СН 5600		75-90	186-216	medium spaced		
CH 5500		Volcanic	75-90	261-291			
CII 5500			0-20	141-171			
			60-75	111-141			
		Volcanic	75-90	321-351			
CH 5600	CH 5700		75-90	231-261			
CH 5000	011 5700		40-60	171-201			
			0-20	081-111	Closely to	Tight to	
			75-90	319-349	medium spaced	extremely	Staining
CH 5700			75-90	049-079	medium spaced	narrow	
	CH 5800	00 Volcanic	60-75	110-140			
			20-40	049-079	-		
			0-20	350-020			

Starting	Ending		D' ()			A .	T (****
Chainage (m)	Chainage (m)	Rock Type	Dip (°)	Dip Direction (°)	Spacing	Aperture	Infilling
			75-90	077-107			
			75-90	137-167			
CH 5800	CH 5900	Volcanic	75-90	200-230			Staining
			40-60	257-287		Tight to	
			0-20	350-020	Closely to	extremely narrow	
			75-90	285-315	medium spaced		
CH 5000	CH 6000	Valaania	75-90	141-171			
CH 3900	CH 0000	voicanic	75-90	345-015			
			0-20	165-195			
			75-90	173-203			
CH 6000	CH 6100	Voloania	60-90	133-163			
C11 0000	CII 0100	voicanic	60-75	203-233	Closely to medium spaced	Tight to	
			20-40	213-345		extremely	Staining
			75-90	140-170		narrow	
CH 6100	CH 6200	Volcanic	75-90	245-275			
СН 6200			0-20	232-262			
			75-90	261-291			
	CH 6300	Volcanic	40-90	081-111			
0200	CH 0500	volcanic	40-60	321-351			
			0-20	171-201	Closely to	Tight to	Staining
			75-90	173-203	medium spaced	extremely narrow	
			75-90	265-295	medium spaced		
CH 6300	CH 6400	Volcanic	60-75	310-340			
			60-75	025-055			
			0-40	055-085			
			75-90	283-313			
	CH 6500	Volcanic	75-90	193-223	Closely to		
CH 6400			75-90	107-137			
			40-60	043-073		Tight to	Staining
			60-75	137-167		extremely narrow	
			0-20	193-223	medium spaced		
			75-90	175-209	-		
CH 6500	CH 6600	Volcanic	75-90	269-299	-		
			60-75	359-029	-		
			0-20	205-235			
			75-90	229-259	-		
	CH (700	37.1	75-90	309-339	-		
CH 6600	CH 6/00	voicanic	/5-90	048-078	-	T. 1.4.4.	
			40-60	120-150	Closely to	l ight to	Staining
			20-40	019-049	medium spaced	narrow	Stanning
			75-90	2/0-300	-	narrow	
CH 6700	CH 6800	Volcanic	/3-90 60.75	141 171			
			0.20	141-1/1	-		
			75.00	206.226			
			75-90	210.240	-		
СН 6800 СН 6900	CH 6900	Volcanic and	60.75	210-240			
	011 0900	Granite	40.60	210.240			
			0.20	220 250	Closely to	Tight to	
			75.00	229-239	medium snaced	extremely	Staining
			75-90	020-350	inculain spaced	narrow	
	CH 7000	Granite	40.60	050.080	_	harrow	
			40-60	310-350			
			0-20	110-140	1		

 Table B
 Summary Rock Discontinuity Data (Sheet 5 of 9)

Starting	Ending	Pook Type	Din(a)	Din Direction (a)	Specing	Apartura	Infilling
Chainage (m)	Chainage (m)	коск туре	Ъф(°)	Dip Direction (9)	Spacing	Aperture	mining
CH 7000			75-90	109-139			
			75-90	049-079			
	CH 7100	Granite	75-90	179-209		Tight to	
			60-75	019-099	Closely to medium spaced	extremely narrow	Staining
			0-20	332-002			Stating
	CH 7200	Granite	75-90	194-224			
CH 7100			75-90	056-089			
			60-75	314-344			
		Granite	75-90	210-240			Staining
СН 7200	CH 7300		40-60	075-105			
011 /200			40-60	285-315			
			40-60	005-035	Medium to	Tight to	
			75-90	209-239	widely spaced	extremely narrow	
		Granite	75-90	149-179	waery spaced		
CH 7300	CH 7400		60-75	329-359			
			40-60	040-070			
			0-20	180-210			
		Granite	75-90	115-145	Medium to	Tight to extremely narrow	Staining
CH 7400	CH 7500		75-90	209-239	widely spaced		
			40-60	005-035	waeij spacea		
	CH 7600	Granite & Volcanic	75-90	115-145	Closely to medium spaced	Tight to extremely narrow	Staining
			75-90	209-239			
CH 7500			60-75	329-359			
			40-60	285-315			
			0-20	180-210			
	СН 7700	Volcanic	75-90	298-328	Closely to medium spaced	Tight to extremely narrow	Staining
			75-90	223-253			
CH 7600			75-90	343-013			
			40-60	223-253			
			0-20	029-049			
	CH 7800	Volcanic	75-90	283-313			
			75-90	043-073			
CH 7700			75-90	208-238			
			40-60	223-253			
			0-20	253-283			
	СН 7900	0 Volcanic	75-90	298-328	Closely to medium spaced	Tight to extremely narrow	Staining
			75-90	043-073			
			60-75	208-238			
CH 7800			40-60	339-009			
			40-60	163-223			
			0-20	253-283			
			0-20	073-103			
		3000 Volcanic	75-90	014-044			
	CH 8000		75-90	073-103			
СН 7900			40-60	163-193			
			65-75	158-188			
			0-20	193-223			

 Table B
 Summary Rock Discontinuity Data (Sheet 6 of 9)

Starting Chainage (m)	Ending Chainage (m)	Rock Type	Dip (°)	Dip Direction (°)	Spacing	Aperture	Infilling
enange (m)	enwange (m)		75-90	026-056			
CH 8000	CH 8100		75-90	149-179			
			75-90	314-344			
		Volcanic	60-75	315-345			Staining
			40-60	056-086			
			0-20	060-090	Closely to	Tight to extremely narrow	
			75-90	226-256	medium spaced		
	CH 8200	Volcanic	75-90	304-334	· ·		
			75-90	135-165			
CH 8100			60-75	046-076			
			60-75	135-165			
			0-20	175-205			
			60-90	323-353			
~~~~~~~			75-90	068-088		Tight to extremely narrow	Clay
CH 8200	CH 8300	Volcanic	60-75	002-032			
			0-20	123-153	Closely to		
			75-90	356-026	medium spaced		
CII 0200	GTL 0.400	<b>.</b>	75-90	261-311	· ·		
CH 8300	CH 8400	Volcanic	60-75	206-236			
			40-60	119-149			
			75-90	156-186		Tight to extremely narrow	Clay
			75-90	336-006			
CTT 0 100	CH 8500	<b>.</b>	75-90	198-228	Closely to medium spaced		
CH 8400		Volcanic	40-75	078-108			
			20-60	258-288			
			0-20	051-081			
	CH 8600		75-90	193-223			
			75-90	323-333			
			75-90	130-160			
CH 8500		Volcanic	75-90	310-340			
			45-60	166-196			
			0-20	104-134			
			0-20	017-047			
	CH 8700		75-90	185-215	Extremely closely to closely spaced	Tight to extremely narrow	Clay
			75-90	250-310			
CH 8600		Volcanic	40-60	325-355			
			0-20	140-170			
			0-20	310-340			
			75-90	104-134			
	CH 8800	H 8800 Volcanic	75-90	179-209			
CH 8700			75-90	260-290			
			75-90	333-006			
			40-60	261-291			
			0-20	004-034			
CH 8800	СН 8900	8900 Volcanic	60-75	098-128	Extremely closely to closely spaced	Tight to extremely narrow	Clay
			75-90	218-248			
			0-20	114-144			
СН 8900		000 Volcanic	20-40	047-077			
	СН 9000		60-90	306-336			
			60-75	171-201			
			75-90	272-302			

 Table B
 Summary Rock Discontinuity Data (Sheet 7 of 9)

Starting	Ending	Rock Type	Din (°)	Din Direction (°)	Spacing	Aperture	Infilling
Chainage (m)	Chainage (m)	nook Type	54()	Dip Direction ()	Spacing	riperture	mining
СН 9000		Volcanic &	75-90	216-246			
	CH 9100		75-90	306-336			
		Granite	75-90	186-216			
		Granice	0-20	096-126		Tight to	
			60-75	126-156	Very closely to	extremely	Staining
			75-90	156-186	medium spaced	narrow	
	СН 9200	Granite	75-90	246-276			
CH 9100			0-20	051-081	-		
			40-60	246-276	-		
			75-96	141-171			
			75-90	147-171			
			75-90	066-096			
CH 9200	CH 9300	Granite	75-90	201-231			
			75-90	086-156			
			20	051-081	Very closely to	Tight to	a
			75-90	186-216	medium spaced	extremely narrow	Staining
			75-90	261-281	-		
CH 9300	CH 9400	Granite	75-90	141-171	-		
			40-60	351-021	-		
			20-40	031-086	-		
			0-20	051-081			
			75-90	186-216	-	Tight to extremely narrow	Non-clay
CH 9400	CH 9500	Granite	75-90	231-261	Very closely to medium spaced		
			75-90	141-171			
			40-60	351-021			
		Granite	75-90	156-186			
CH 9500	CH 9600		75-90	186-216			
			75-90	051-081			
			0-20	045-075			
	CH 9700	Granite	75-90	230-260	Extremely closely to closely spaced	Tight to extremely narrow	Non-clay
CH 9600			75-90	155-185			
			0-20	050-080			
	CH 9800	Granite	/5-90	185-215			
CH 9700			/5-90	215-245			
			40-75	155-195			
			0-20	2/5-305			
	СН 9900	000 Granite	75-90	215 245	Very closely to closely spaced	Tight to extremely narrow	Non-clay
CH 0800			75-90	213-243			
CII 9800			/3-90	280.210			
			60.75	125 155			
			75.00	123-133			
	CH 10000	0000 Granite	75-90	220.250			
СН 9900			/3-90	220-230			
			40-00	105-165			
			75.00	240.270			
CH 10000	CH 10095	Granite & Volcanic	75.00	065 005	Very closely to medium spaced	Tight to narrow	Clay
			60.75	210.240			
			20.40	160,100			
			0.20	245 275			
			75.00	1/0 170			
CH 10095	CH 10200	)200 Granite & Volcanic	75-90	235_285			
			40_60	060_000			
			0-20	185_215	1		
	1		0-20	105-215	1	l	

 Table B
 Summary Rock Discontinuity Data (Sheet 8 of 9)

Starting Chainage (m)	Ending Chainage (m)	Rock Type	Dip (°)	Dip Direction (°)	Spacing	Aperture	Infilling
СН 10200	CH 10300	Volcanic	75-90	195-225	Very closely to medium spaced	Tight to narrow	Clay
			75-90	135-165			
			75-90	315-345			
			0-20	195-225			
СН 10300	CH 10400	Volcanic	20-40	300-330			
			75-90	225-285			
			40-60	135-165			
			40-60	235-265			
CH 10400	CH 10535	10535 Volcanic	75-90	080-110	Very closely to medium spaced	Tight to narrow	Non-clay
			75-90	150-180			
			75-90	310-340			
			40-60	270-300			
			60-75	255-265			

 Table B
 Summary Rock Discontinuity Data (Sheet 9 of 9)



Figure B1 Discontinuity Survey Data of Hong Kong West Drainage Tunnel (Sheet 1 of 5) (from Arup, 2007)


Figure B2 Discontinuity Survey Data of Hong Kong West Drainage Tunnel (Sheet 2 of 5) (from Arup, 2007)



Figure B3 Discontinuity Survey Data of Hong Kong West Drainage Tunnel (Sheet 3 of 5) (from Arup, 2007)



Figure B4 Discontinuity Survey Data of Hong Kong West Drainage Tunnel (Sheet 4 of 5) (from Arup, 2007)



Figure B4 Discontinuity Survey Data of Hong Kong West Drainage Tunnel (Sheet 5 of 5) (from Arup, 2007)

Appendix C

Summary of Probing Records

Starting Chainage	End Chainage	Probe length	Inflow (L/min)	Inflow (L/min/m)
15.00	35.00	20.00	5.40	0.27
27.00	47.00	20.00	2.50	0.13
35.00	55.00	20.00	13.95	0.70
44.00	64.00	20.00	0.60	0.03
60.00	85.00	25.00	0.00	0.00
80.00	106.00	26.00	0.00	0.00
97.00	122.00	25.00	0.00	0.00
114.80	139.80	25.00	0.00	0.00
130.00	155.40	25.40	0.40	0.02
146.70	176.70	30.00	0.00	0.00
189.00	229.30	40.30	0.75	0.02
220.70	281.10	60.40	0.00	0.00
270.16	326.86	56.70	1.80	0.03
316.75	374.45	57.70	0.10	0.00
363.20	423.60	60.40	0.00	0.00
411.07	465.97	54.90	0.50	0.01
451.84	506.74	54.90	0.30	0.01
496.84	546.24	49.40	0.20	0.00
535.94	590.84	54.90	0.20	0.00
580.92	621.22	40.30	7.50	0.19
607.93	651.83	43.90	1.10	0.03
627.53	669.63	42.10	75.00	1.78
657.52	712.42	54.90	3.60	0.07
696.53	751.43	54.90	24.00	0.44
708.55	763.45	54.90	7.20	0.13
746.11	795.51	49.40	1.30	0.03
785.08	839.98	54.90	7.80	0.14
824.11	868.01	43.90	25.95	0.59
842.07	896.97	54.90	30.00	0.55
885.62	927.71	42.09	25.00	0.59
885.62	940.52	54.90	0.90	0.02
930.61	980.02	49.41	34.00	0.69
966.67	1008.76	42.09	50.00	1.19
987.65	1029.74	42.09	15.00	0.36
1014.71	1069.61	54.90	35.00	0.64
1037.23	1079.32	42.09	4.00	0.10
1068.72	1108.98	40.26	33.00	0.82
1098.79	1153.69	54.90	0.50	0.01
1137.38	1192.68	55.30	0.60	0.01
1176.74	1231.64	54.90	0.90	0.02
1221.89	1276.79	54.90	8.00	0.15
1265.30	1320.20	54.90	2.30	0.04
1304.28	1346.37	42.09	6.80	0.16
1331.32	1373.41	42.09	2.80	0.07

 Table C
 Summary of Probing Records (Sheet 1 of 8)

Starting Chainage	End Chainage	Probe length	Inflow (L/min)	Inflow (L/min/m)
1362.93	1425.15	62.22	12.00	0.19
1406.37	1450.29	43.92	40.00	0.91
1433.33	1488.23	54.90	7.00	0.13
1477.01	1519.10	42.09	30.00	0.71
1504.15	1546.24	42.09	26.00	0.62
1526.45	1581.35	54.90	3.00	0.05
1570.00	1612.09	42.09	15.00	0.36
1592.46	1634.55	42.09	16.70	0.40
1624.07	1666.16	42.09	20.00	0.48
1655.54	1697.63	42.09	18.40	0.44
1687.09	1747.48	60.39	0.10	0.00
1735.34	1795.53	60.19	0.00	0.00
1781.71	1825.63	43.92	0.00	0.00
1814.79	1869.69	54.90	0.50	0.01
1859.67	1920.08	60.41	0.50	0.01
1907.82	1968.21	60.39	1.80	0.03
1957.25	2017.84	60.59	0.00	0.00
2006.84	2047.10	40.26	0.00	0.00
2030.76	2074.68	43.92	0.00	0.00
2062.40	2122.79	60.39	0.00	0.00
2105.95	2166.31	60.36	0.50	0.01
2149.49	2209.88	60.39	0.50	0.01
2199.09	2241.18	42.09	17.10	0.41
2226.05	2286.44	60.39	0.50	0.01
2275.64	2336.03	60.39	0.50	0.01
2320.58	2369.99	49.41	34.50	0.70
2358.09	2418.48	60.39	1.50	0.02
2407.45	2467.84	60.39	2.00	0.03
2458.45	2518.84	60.39	0.40	0.01
2507.92	2568.31	60.39	0.00	0.00
2552.98	2613.37	60.39	0.20	0.00
2593.50	2653.89	60.39	0.50	0.01
2641.55	2701.94	60.39	0.00	0.00
2691.04	2751.43	60.39	0.00	0.00
2740.58	2800.97	60.39	0.20	0.00
2790.09	2850.48	60.39	0.20	0.00
2839.70	2900.09	60.39	0.00	0.00
2884.74	2945.13	60.39	0.00	0.00
2934.25	2994.64	60.39	0.30	0.00
2982.46	3042.85	60.39	0.40	0.01
3032.07	3092.46	60.39	0.50	0.01
3081.47	3141.86	60.39	0.70	0.01
3123.52	3183.91	60.39	0.00	0.00
3170.03	3224.93	54.90	4.40	0.08

 Table C
 Summary of Probing Records (Sheet 2 of 8)

			-	
Starting Chainage	End Chainage	Probe length	Inflow (L/min)	Inflow (L/min/m)
3209.00	3269.39	60.39	2.00	0.03
3258.46	3313.36	54.90	0.10	0.00
3301.97	3362.36	60.39	0.00	0.00
3351.64	3412.03	60.39	0.00	0.00
3401.20	3461.59	60.39	0.00	0.00
3450.66	3511.05	60.39	0.00	0.00
3500.24	3560.63	60.39	0.00	0.00
3545.19	3605.58	60.39	0.00	0.00
3594.82	3655.21	60.39	4.00	0.07
3644.31	3704.70	60.39	0.80	0.01
3693.99	3764.38	70.39	0.00	0.00
3741.47	3801.86	60.39	0.00	0.00
3787.05	3847.44	60.39	0.00	0.00
3836.53	3869.47	32.94	0.00	0.00
3858.95	3919.34	60.39	1.60	0.03
3905.49	3947.58	42.09	54.00	1.28
3937.00	3975.44	38.44	1.20	0.03
3956.50	4016.50	60.00	0.50	0.01
4007.13	3956.50	50.63	0.00	0.00
4034.45	3996.11	38.34	1.50	0.04
4061.51	4015.76	45.75	10.00	0.22
4079.37	4024.47	54.90	20.00	0.36
4103.34	4061.25	42.09	90.00	2.14
4145.49	4085.10	60.39	18.00	0.30
4192.12	4131.73	60.39	4.20	0.07
4237.15	4194.80	42.35	66.60	1.57
4237.15	4176.76	60.39	6.00	0.10
4268.00	4207.61	60.39	22.00	0.36
4307.67	4263.75	43.92	75.00	1.71
4342.16	4281.77	60.39	60.00	0.99
4370.95	4327.03	43.92	60.00	1.37
4395.85	4351.93	43.92	35.00	0.80
4439.89	4379.50	60.39	27.00	0.45
4462.58	4418.33	44.25	80.00	1.81
4477.46	4433.54	43.92	80.00	1.82
4503.10	4459.18	43.92	60.00	1.37
4552.51	4492.12	60.39	1.00	0.02
4600.78	4540.39	60.39	1.20	0.02
4647.58	4586.79	60.79	1.00	0.02
4677.18	4622.28	54.90	3.00	0.05
4707.54	4656.30	51.24	16.60	0.32
4748.00	4687.68	60.32	20.00	0.33
4797.39	4740.66	56.73	1.50	0.03

 Table C
 Summary of Probing Records (Sheet 3 of 8)

Starting Chainage	End Chainage	Probe length	Inflow (L/min)	Inflow (L/min/m)
4836.59	4792.67	43.92	24.00	0.55
4874.20	4813.81	60.39	10.80	0.18
4902.50	4847.60	54.90	17.50	0.32
4931.03	4887.11	43.92	45.00	1.02
4949.40	4905.48	43.92	30.00	0.68
4979.02	4929.61	49.41	45.00	0.91
4997.40	4955.30	42.10	7.50	0.18
5010.85	4968.79	42.06	60.00	1.43
5028.67	4984.75	43.92	60.00	1.37
5051.17	5007.87	43.30	60.00	1.39
5064.00	5020.80	43.20	60.00	1.39
5082.75	5044.32	38.43	60.00	1.56
5127.77	5067.36	60.41	5.00	0.08
5171.00	5110.61	60.39	2.50	0.04
5214.84	5153.95	60.89	15.00	0.25
5247.91	5205.82	42.09	60.00	1.43
5265.89	5210.99	54.90	75.00	1.37
5315.45	5255.06	60.39	4.00	0.07
5360.71	5300.32	60.39	5.00	0.08
5410.15	5349.76	60.39	1.00	0.02
5459.81	5399.42	60.39	2.20	0.04
5503.35	5448.45	54.90	1.80	0.03
5527.61	5489.18	38.43	10.00	0.26
5557.34	5502.44	54.90	0.00	0.00
5579.77	5537.68	42.09	20.00	0.48
5602.30	5558.38	43.92	150.00	3.42
5624.80	5586.37	38.43	90.00	2.34
5647.14	5608.71	38.43	44.90	1.17
5668.56	5624.64	43.92	24.00	0.55
5687.67	5649.24	38.43	100.00	2.60
5705.71	5661.79	43.92	18.00	0.41
5728.45	5690.02	38.43	60.00	1.56
5756.66	5714.57	42.09	100.00	2.38
5778.32	5736.23	42.09	62.00	1.47
5805.92	5763.80	42.12	88.00	2.09
5823.22	5779.30	43.92	100.00	2.28
5867.10	5828.67	38.43	75.00	1.95
5867.10	5806.71	60.39	70.00	1.16
5888.83	5861.38	27.45	60.00	2.19
5932.43	5872.04	60.39	0.30	0.00
5983.04	5922.65	60.39	0.30	0.00
6031.81	5971.53	60.28	0.80	0.01
6045.59	6012.62	32.97	0.50	0.02

 Table C
 Summary of Probing Records (Sheet 4 of 8)

Starting Chainage	End Chainage	Probe length	Inflow (I/min)	Inflow (I /min/m)
6087.80	6032 70	55 10	8.00	0.15
6137.20	6076.81	60.39	3.00	0.05
6148 71	6106.62	42.09	8.50	0.09
6198.79	6138.40	60.39	2 70	0.20
6225.97	6182.05	43.92	10.00	0.04
6275.22	6214.83	60.30	1.80	0.23
6296.32	6256.06	40.26	27.00	0.03
6346.01	6285.62	60.30	1.50	0.07
6373.06	6320.14	43.02	7.00	0.02
6405 58	6356.17	43.92	14.50	0.10
6455.58	6305.10	49.41 60.20	0.00	0.29
6402.00	6440.17	42.02	20.00	0.00
6403.09	6449.17	43.92	20.00	0.40
6542.70	6482.21	<u>49.41</u>	1.00	0.04
6577.10	6522.20	54.00	50.00	0.02
6629.54	6522.20	<u> </u>	30.00	0.91
0028.34	6300.13	62.39	0.00	0.00
0009.88	6609.49	60.39	0.30	0.01
6755.02	6605 54	60.39	0.00	0.00
6702.01	6740.02	42.00	2.30	0.04
6792.01	6749.92	42.09	23.00	0.39
6/92.01	6/31.02	42.00	10.00	0.17
6811.49	6769.40	42.09	21.40	0.51
6825.00	6/64.61	60.39	17.10	0.28
6870.10	6809.71	60.39	0.80	0.01
6890.92	6847.00	43.92	0.30	0.01
6940.88	6880.49	60.39	0.00	0.00
6984.3 /	6923.98	60.39	0.00	0.00
/033./4	69/3.35	60.39	0.00	0.00
7078.84	7018.45	60.39	0.40	0.01
7110.25	7059.10	51.15	0.00	0.00
7159.96	7099.57	60.39	0.20	0.00
7209.69	7149.30	60.39	5.00	0.08
7259.11	7198.72	60.39	0.00	0.00
7308.84	7248.45	60.39	4.50	0.07
7340.42	7291.01	49.41	25.00	0.51
7389.59	7329.20	60.39	3.80	0.06
7439.38	7478.99	39.61	0.20	0.01
7482.80	7422.41	60.39	0.40	0.01
7525.46	7464.90	60.56	0.20	0.00
7544.51	7511.57	32.94	0.00	0.00
7593.94	7531.72	62.22	3.00	0.05
7622.51	7562.12	60.39	0.50	0.01
7666.62	7606.23	60.39	0.20	0.00

 Table C
 Summary of Probing Records (Sheet 5 of 8)

Starting Chainage	End Chainage	Probe length	Inflow (L/min)	Inflow (L/min/m)
7712.80	7652.41	60.39	0.00	0.00
7762.36	7701.97	60.39	0.00	0.00
7811.87	7751.48	60.39	0.50	0.01
7858.06	7797.67	60.39	0.30	0.00
7907.71	7547.32	360.39	1.50	0.00
7955.38	7894.99	60.39	2.00	0.03
8005.37	7944.98	60.39	2.40	0.04
8055.14	7999.75	55.39	0.00	0.00
8104.56	8042.34	62.22	0.00	0.00
8131.51	8071.12	60.39	1.00	0.02
8181.02	8118.80	62.22	0.20	0.00
8230.52	8168.30	62.22	0.00	0.00
8280.20	8219.81	60.39	0.50	0.01
8313.36	8269.44	43.92	8.60	0.20
8358.10	8297.71	60.39	0.20	0.00
8407.60	8345.38	62.22	0.80	0.01
8450.86	8408.77	42.09	30.00	0.71
8450.86	8390.47	60.39	18.00	0.30
8483.82	8443.11	40.71	20.00	0.49
8533.76	8473.37	60.39	0.80	0.01
8553.76	8491.67	62.09	9.00	0.14
8583.54	8521.32	62.22	0.40	0.01
8634.50	8572.28	62.22	0.60	0.01
8683.73	8621.51	62.22	0.20	0.00
8734.96	8672.74	62.22	0.80	0.01
8780.16	8717.94	62.22	0.30	0.00
8832.65	8770.43	62.22	0.50	0.01
8862.12	8799.00	63.12	0.70	0.01
8913.69	8851.47	62.22	0.00	0.00
8946.53	8902.61	43.92	1.20	0.03
8968.96	8926.67	42.29	15.00	0.35
8983.83	8941.74	42.09	43.00	1.02
9035.32	8993.23	42.09	15.00	0.36
9065.16	9023.07	42.09	75.00	1.78
9083.30	9035.72	47.58	110.00	2.31
9134.36	9072.14	62.22	1.20	0.02
9147.71	9114.77	32.94	0.00	0.00
9179.28	9139.00	40.28	50.00	1.24
9210.71	9166.79	43.92	27.00	0.61
9231.89	9191.63	40.26	25.00	0.62
9255.31	9213.22	42.09	75.00	1.78
9286.77	9244.68	42.09	43.00	1.02
9336 77	9276 38	60 39	20.00	0.33

 Table C
 Summary of Probing Records (Sheet 6 of 8)

Starting Chainage	End Chainage	Probe length	Inflow (L/min)	Inflow (L/min/m)
9363.94	9321.85	42.09	140.00	3.33
9394.00	9351.91	42.09	50.00	1.19
9403.00	9364.57	38.43	75.00	1.95
9433.03	9392.77	40.26	16.00	0.40
9447.10	9403.18	43.92	150.00	3.42
9481.15	9439.06	42.09	150.00	3.56
9507.92	9474.98	32.94	8.00	0.24
9510.89	9468.80	42.09	150.00	3.56
9528.00	9490.47	37.53	65.00	1.73
9544.23	9500.31	43.92	150.00	3.42
9562.20	9518.28	43.92	75.00	1.71
9574.28	9532.19	42.09	100.00	2.38
9594.98	9532.19	62.79	67.50	1.08
9610.24	9568.15	42.09	100.00	2.38
9640.10	9598.01	42.09	120.00	2.85
9670.92	9630.66	40.26	100.00	2.48
9700.52	9645.62	54.90	50.00	0.91
9725.90	9683.81	42.09	8.60	0.20
9739.34	9697.25	42.09	4.60	0.11
9756.57	9717.48	39.09	20.00	0.51
9789.80	9749.54	40.26	60.00	1.49
9819.32	9769.91	49.41	60.00	1.21
9835.30	9820.20	15.10	30.00	1.99
9833.84	9791.75	42.09	200.00	4.75
9860.75	9820.49	40.26	100.00	2.48
9875.59	9835.33	40.26	75.00	1.86
9901.42	9859.33	42.09	9.00	0.21
9931.86	9889.77	42.09	12.50	0.30
9939.92	9897.83	42.09	2.70	0.06
9985.26	9934.02	51.24	0.55	0.01
10022.60	9965.87	56.73	0.70	0.01
10060.60	10003.87	56.73	0.60	0.01
10102.70	10045.97	56.73	0.00	0.00
10129.00	10081.42	47.58	0.00	0.00
10168.40	10113.50	54.90	0.00	0.00
10218.40	10163.50	54.90	0.00	0.00
10270.20	10214.04	56.16	5.00	0.09
10336.20	10299.60	36.60	1.20	0.03
10369.50	10325.58	43.92	0.30	0.01
10389.00	10356.06	32.94	0.00	0.00
10422.20	10381.84	40.36	0.10	0.00
10446.30	10405.13	41.17	7.00	0.17
10472.90	10432.64	40.26	1.25	0.03

 Table C
 Summary of Probing Records (Sheet 7 of 8)

Starting Chainage	End Chainage	Probe length	Inflow (L/min)	Inflow (L/min/m)
10488.28	10448.15	40.13	4.60	0.11
10514.62	10465.82	48.80	0.00	0.00
10532.00	10512.00	20.00	0.00	0.00
10535.00	10515.00	20.00	0.00	0.00
10551.00	10531.00	20.00	0.00	0.00
10560.00	10539.00	21.00	0.00	0.00
10571.20	10551.20	20.00	0.00	0.00
10583.00	10563.00	20.00	0.00	0.00

 Table C
 Summary of Probing Records (Sheet 8 of 8)

Appendix D

Revised Geological Sections

















# GEO PUBLICATIONS AND ORDERING INFORMATION 土力工程處刊物及訂購資料

An up-to-date full list of GEO publications can be found at the CEDD Website http://www.cedd.gov.hk on the Internet under "Publications". The following GEO publications can also be downloaded from the CEDD Website:

- i. Manuals, Guides and Specifications
- ii. GEO technical guidance notes
- iii. GEO reports
- iv. Geotechnical area studies programme
- v. Geological survey memoirs
- vi. Geological survey sheet reports

#### Copies of some GEO publications (except geological maps and other publications which are free of charge) can be purchased either by:

#### Writing to

Publications Sales Unit, Information Services Department, Room 626, 6th Floor, North Point Government Offices, 333 Java Road, North Point, Hong Kong.

or

- Calling the Publications Sales Section of Information Services Department (ISD) at (852) 2537 1910
- Visiting the online Government Bookstore at http:// www.bookstore.gov.hk
- Downloading the order form from the ISD website at http://www.isd.gov.hk and submitting the order online or by fax to (852) 2523 7195
- Placing order with ISD by e-mail at puborder@isd.gov.hk

# 1:100 000, 1:20 000 and 1:5 000 geological maps can be purchased from:

Map Publications Centre/HK, Survey & Mapping Office, Lands Department,

23th Floor, North Point Government Offices, 333 Java Road, North Point, Hong Kong. Tel: (852) 2231 3187 Fax: (852) 2116 0774

#### Any enquires on GEO publications should be directed to:

Chief Geotechnical Engineer/Planning and Development, Geotechnical Engineering Office, Civil Engineering and Development Department, Civil Engineering and Development Building, 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong. Tel: (852) 2762 5351 Fax: (852) 2714 0275 E-mail: ivanli@cedd.gov.hk 詳盡及最新的土力工程處刊物目錄,已登載於土木工程拓展署的互聯網網頁http://www.cedd.gov.hk 的"刊物"版面之內。以下的土力工程處刊物亦可於該網頁下載:

- i. 指南、指引及規格
- ii. 土力工程處技術指引
- iii. 土力工程處報告
- iv. 岩土工程地區研究計劃
- v. 地質研究報告
- vi. 地質調查圖表報告

# 讀者可採用以下方法購買部分土力工程處刊物(地質圖及免費 刊物除外):

#### 書面訂購

香港北角渣華道333號 北角政府合署6樓626室 政府新聞處 刊物銷售組

# 或

- 致電政府新聞處刊物銷售小組訂購 (電話:(852) 2537 1910)
- 進入網上「政府書店」選購,網址為
- http://www.bookstore.gov.hk
- 透過政府新聞處的網站 (http://www.isd.gov.hk) 於網上遞交 訂購表格,或將表格傳真至刊物銷售小組 (傳真:(852) 2523 7195)
- 以電郵方式訂購 (電郵地址: puborder@isd.gov.hk)

### 讀者可於下列地點購買1:100 000、1:20 000及1:5 000地質圖:

香港北角渣華道333號 北角政府合署23樓 地政總署測繪處 電話:(852)22313187 傳真:(852)21160774

# 如對本處刊物有任何查詢,請致函:

香港九龍何文田公主道101號 土木工程拓展署大樓 土木工程拓展署 土力工程處 規劃及拓展部總土力工程師 電話:(852)27625351 傳真:(852)27140275 電子郵件:ivanli@cedd.gov.hk